Recovery Observatory Demonstrator – recent updates and long-term sustainability approach

Hélène de Boissezon, CNES Andrew Eddy, Athena Global Emilie Bronner, CNES Mathias Studer, SERTIT Mathilde Caspard, SERTIT

on behalf of the RO Demo Team

WG Disasters 18 Université de la Côte d'Azur, Nice, France

Overview

Pakistan Floods (20 September)

Situation

Needs

Current Response (from satellites)

RO added value

Sustainability Sub-team

Overview of work to date

Partners and roles

Activation process

Sustainability challenges

Means

Pakistan Activation

Emilie BRONNER, CNES Mathias STUDER, SERTIT Mathilde CASPARD, SERTIT

RO Liaison Officers for RO Pakistan 2022

Context

- Since mid-June 2022, severe heat waves caused stronger monsoon rains and melting glaciers
- Worst recorded flood event in Pakistan submerged one-third of country, impacting 4,2 million people and killing more than 1,500 people

Context

- Since mid-June 2022, severe heat waves caused stronger monsoon rains and melting glaciers
- Worst recorded flood event in Pakistan submerged one-third of country, impacting 4,2 million people and killing more than 1,500 people

2022-06-01 06:00:00 UTC

RO Demo 4 activation

The 4th Recovery Observatory Demonstrator has been triggered 20 September at request of EU, on behalf of the tripartite team (EU / World Bank and UNDP), in support of:

- the Post Disaster Need
 Assessment
- the Recovery Framework

PDNA needs

- PDNA officially activated on September 16, 2022
- EU will coordinate the PDNA process and lead the agriculture sector
- The PDNA report is expected for mid-October
- RO activation would focus on providing complementary information to that have been already (or will be) committed (e.g. IPSOS and CIMA/LIST contributions)
- The analysis will focus on 84 districts that have been identified as « calamity districts »
- Needs has been expressed concerning:
 - potential landslides that may have impacted orchards
 - potential impacted Natural Park and Reserve

The 84 calamity districts with a priority level

IPSOS

- Subcontractor for the World Bank
- Global flood extent
- Global flood intensity
- Using Sentinel-1 (10m) data
- Estimation of damage for major crops Using databases, publicly available information and field survey

- Contribution through ADB
- Flood cumulative extent June-August
- Flood frequency

UNOSAT/UNITAR

- Contribution through the International Space and Major Disasters
- Flood extents from July to mid-September

ted Nations Satellite Centre (UNOSAT) -7 bis Avenue de la Paix, CH-1202 Geneva 2, Switzerland - T: +41 22 917 4720 (UNOSAT Operations) - Hotline 24/7 : +41 75 411 4988 - unosat@unitar.org - www.unitar.org/unosat

Global Flood Monitoring

- Estimated flood extent at 1km resolution based on Sentinel-1 data
- Revisit every 12 days

• Detailled flood delineation at 1,5m over 3 inhabited areas

Other available resources

Satellite imagery

- Systematic and free acquisitions (Sentinel-1/2, Landsat-8/9, VIIRS, MODIS...)
- Images acquired within the framework of the International Space and Major Disasters

Activa	ation m2	Acquis		Filtore	Pro	ouce 🕒		ح search
)	_	_	,	Fillers		_		
resolution	Muy Baja 🛛	B	aja 90	Media	44	Alta 380		Muy Alta 256
ensor	Optical 674 Ra	adar 🥵						
iatellite	Select all							
	CBERS4 10		GEO_EYE_1	63		KANOPUS_V 12		KANOPUS_V_IK z
	KhalifaSat 1	-	KOMPSAT3	2		KOMPSAT5 6		LANDSAT8 15
	LANDSAT9	12 🔽	NewSat 11	L		OHS-2A 1		OHS-2B 7
	OHS-2C 6	-	OHS-2D 9			OVS-2A 7		PlanetScope 317
	🗸 RCM-1 🛛	-	RCM-2 14			RCM-3 z		Saocom 1A 4
	Saocom 1B	з 🔽	SENTINEL_	1A 59		SENTINEL_2A 16	~	SENTINEL_2B 15
	TANDEM_X	з 🕑	TERRASAR	X 1	~	VISION-1 6	~	WORLDVIEW_2 123
		/_3 39						
amily	Select all							
	CBERS4 10		KANOPUS_	/ 12		KANOPUS_V_IK 2		KhalifaSat 1
	Kompsat3	2 🗸	KOMPSAT5	6	•	LANDSAT8 15		LANDSAT9 12
	NewSat 11	-	OHS-2 23			0VS-2 7		PlanetScope 317
	RCM 20		SAOCOM-1	7		SENTINEL_1 59		SENTINEL_2 31
	TERRASAR X	4	US-VHR 22	5		VISION-1 6		

Charter Geobrowsing Tool

5 October 2022

Jodhp

Other available resources

Landcover databases

ESA Worldcover (2020) 10m resolution

Forests Shrubland Herbaceous vegetation Herbaceous wetland Moss & lichen Bare / sparse vegetation Cropland

Copernicus Global Landcover (2019) 100m resolution

FAO Orchards 2021

Mushtaq. F., Ghosh. A., Jalal. R., Dadhich. G., Ali. M., Asghar. A., and Henry. M. for A Rapid Geospatial Flood Impact Assessment in Pakistan, August 2022. (forthcoming). Food and Agriculture Organization of United Nations, Rome, Italy

5 October 2022

OSM ?

And:

Possible CEOS contributions

Potential landslides detection

• Solicitation of potential contributors: EOST, NASA, BGC, ASI...

 Identification of two steep areas within the impacted districts

Possible CEOS contributions

Potential landslides detection

 EOST launch some automated process with the ALADIM machine learning service, exploited on GEP, over a part (9 Sentinel-2 tiles) of Balochistan Province

5 October 2022

Possible CEOS contributions

Multi-sources flood extraction layers:

- Gathering
- Analysis and validation

Flood synthesis product:

- Generation
- Intersection with landuse/lancover layer
- Statistics derivation

Impact on natural protected areas

Summary of the PDNA phase

	Hazard char	acterization	Potentia	Synthesis,	
Contributors	Flood	Landslide	Imagery	Databases	statistics
ASI		To be confirmed	Х		
CIMA	Already provided				
CNES			Х		
Copernicus EMS	Already provided			х	
DLR			Х		
EOST		To be delivered			
FAO				X	
Icube-SERTIT					To be delivered
International Space and Major Disasters			Х		
IPSOS		To be delivered			
LIST	Already provided				
NASA		To be confirmed	Х		
UNOSAT	Already provided				

Recovery Observatory – status of Sustainability Subteam

Hélène de Boissezon, CNES Andrew Eddy, Athena Global

Sustainability sub-team

- Created spring 2022 representatives from tripartite agreement, space agencies and solution providers
- 2 mtgs to date in June and September 2022
- Will report back to RO Demo Team at UR 2022 meeting
- Expected to continue to end 2023, with emphasis moving from concept development to implementation in early 2023

Partner contributions

Openly available response data and products	 Copernicus EMS RM Sentinel-Asia UNOSAT Open-source sat data (Landsat, Sentinels, DTM) Data bases (landcover, population,) 	Integrated Situational Awareness to support recovery:
CEOS best efforts RO data and products	 Dedicated acquisitions of commercial data Complex satellite products (e.g. SAR interferometry) RO liaison officer and overall coordination Value adding services Capacity building 	 Informed PDNA; Pre and post disaster baselines; Medium term
Ad hoc contributions: academia, international organizations (e.g. CEMS, FAO, UN)	 Linkages to Copernicus Risk and Recovery and ESA GDA, EO Clinic Value adding services Expert analysis Integration of other advanced data sources (e.g. social media, drones,) 	 Capacity building assessment and plan.

5 October 2022

Activation – RO Demo

Activation – POST RO Demo

Slide 23

5 October 2022

Sustainability Challenges – and approaches to address them

- Any solutions rely on marriage of free and open data with commercial data sets data cost remains a hurdle
- Work with hotspots and provide **total coverage at varying resolutions**; ensure solutions are scalable.
- * Awareness of specific benefit still limited in recovery community
- Showcase RO Demo successes from **stakeholder viewpoints**
- * Understanding of differences in satellite data solutions still low (e.g. free and open data vs commercial datasets)
- Focus on **integrated solutions** but bring **clear cost-benefit** to show how using commercial data sets augments overall benefit of satellite EO usage
- Short timeline for PDNA means budgets not usually available to invest in EO (especially value-added products which are key)
- · Identify cost-benefit wins and set up funds in advance of disaster to be able to tap into resources
- Continuous effort to be put on **Capacity Building** (not only technical, decision makers too) and **co-construction**
- Strengthen links WG CapD / WG Disasters, for a synergistic action ; Develop "peer awareness"

Means

Possible sources of funding:

- World Bank/GFDRR existing trust funds and/or new initiatives?
- EU existing ACP programs with a focus on capacity building for risk reduction
- UNDP UNOSAT SOP agreement and training for PDNAs
- Foundations? Private sector?

Vision to move forward:

- Chart out cost-benefit of specific RO activations, either past or imagined;
- Raise profile of RO Demo within tripartite agreement organizations; face-to-face meetings at World Bank, UNDP, Brussels/EU...
- Determine vision for 2024-2026 period, including establishing coordination mechanism for satellite data access; recommendations for action

Necessary "Core" RO (as perceived to date)

RO Liaison function (to transition from satellite agencies to recovery stakeholders)

- Document and encourage satellite contribution from wide array of sources
- Understand needs and coordinate tasking of CEOS satellites if required
- Prepare dedicated PDNA contribution on as required basis
- Serve as principal PoC for satellite community with recovery stakeholders

Identify dedicated RO funds that can be activated on demand – existence of funding makes significant difference in ability to contribute quality contributions quickly (e.g. Pakistan – IPSOS and CIMA through WB and ADB)

Capacity building – only RO has a developed CB component to involve local and regional technical expertise and create longstanding institutional relationships