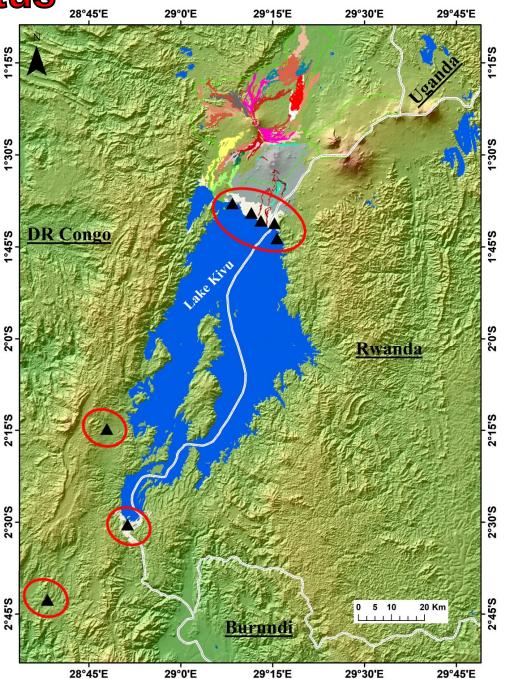

Virunga Supersite:

Implementation status, Preliminary results and future challenges

Charles Balagizi Goma Volcano Observatory



1. Implementation Status

Local-Regional network

The Virunga supersite is now a network of local scientists from 7 institutions (Universities and Research Centers)

- 5 in DR Congo
- 2 in Rwanda

International network

2. Preliminary results

2.1. Copernicus: Emergency and Management Service Risk & Recovery Mapping

LATEST NEWS · 2018-08-28 | [EMSR307] Forest Fire in Jüterborg, Germany

EMS - MAPPING

- Service Overview
- Who can use the service
- · How to use the service
- Products: Rapid Mapping
- Products: Risk and Recovery
- Quality control / Feedback
- User Guide

RAPID MAPPING

- List of Activations
- Map of Activations
- GeoRSS Feed

RISK AND RECOVERY

- List of Activations
- Map of Activations
- GeoRSS Feed

Map of Activations of Other

EMSN047: Volcanic risk in Democratic Republic of the Congo

Event Type: Other (Volcanic hazard)

Activation Time (UTC): 2018-03-30 00:00

Activation Status: Closed

Affected Countries/Territories:

Democratic Republic of the Congo

Area Descriptor: Goma, Congo

Authorized User:

European Commission, DG ECHO, Emergency Response and Coordination Center (ERCC) on behalf of Goma Volcano Observatory

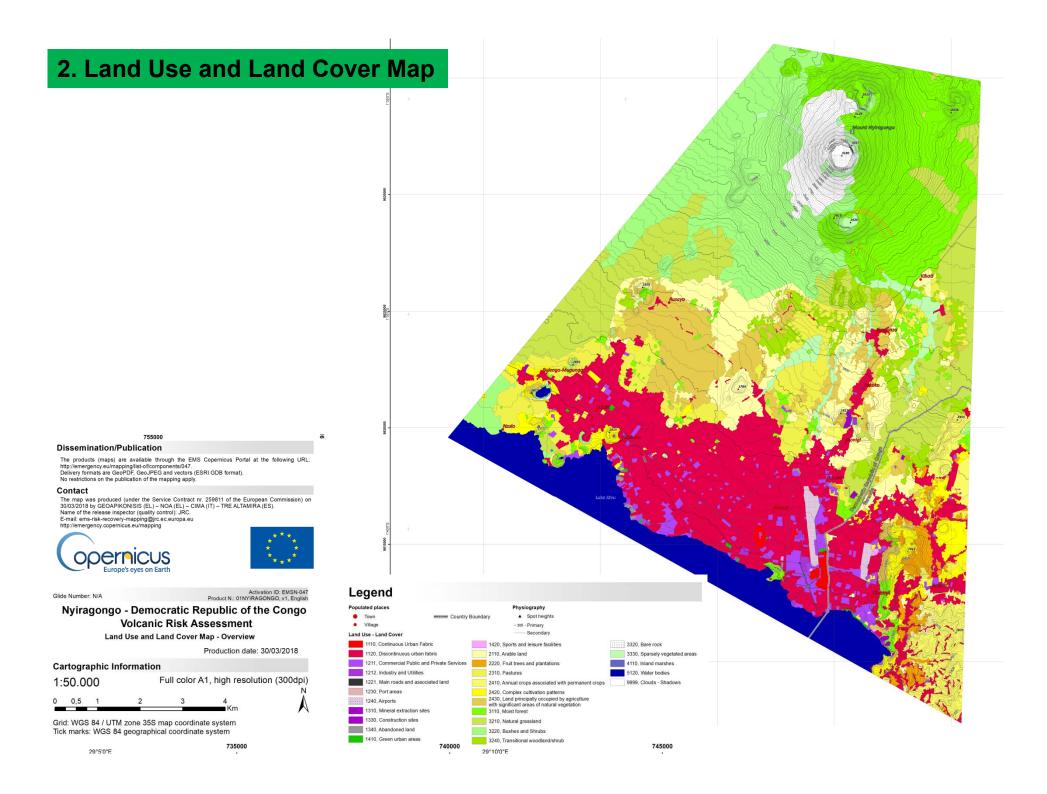
Tshopo Kampala toublic (3) Congo Burundi © OpenStreetMap contributors | Disclaimer

Coverage map: Q GeoRSS: 6

Show Activation Overview :

The purpose of the requested mapping is to generate comprehensive knowledge through performing pre-disaster situation analysis, concerning a potential eruption of the Nyiragongo volcano located near to Goma, capital of the Democratic Republic of Congo (DRC).

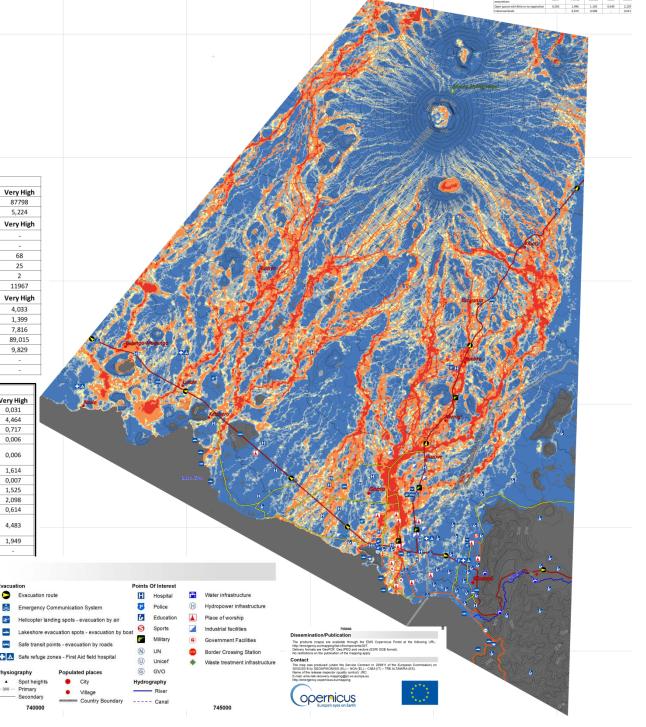
The results refer to background information as well as to the assessment of the impact of a potential volcano activity on the surrounding urban agglomerations and infrastructures; detailed Digital Elevation Model (DEM), hazard, exposure and vulnerability. These products intend to support informed decision making of the involved stakeholders


The Copernicus successfully activated risk analyses with a focus on volcanic hazard, and produced: 1. Reference Map Dissemination/Publication The products (maps) are available through the EMS Copernicus Portal at the following URL: http://emergency.eu/mapping/ist-of/components/047. Delivery formats are Geo-PDF Geo-PEG and vectors (ESRI GDB format). No restrictions on the publication of the mapping apply. opernicus Legend Nyiragongo - Democratic Republic of the Congo Volcanic Risk Assessment Reference Map - Overview Production date: 30/03/2018 Spot height **Cartographic Information**

Border Crossing Station
 Waste treatment infrastructure

1:50.000

Grid: WGS 84 / UTM zone 35S map coordinate system Tick marks: WGS 84 geographical coordinate system


Full color A1, high resolution (300dpi)

3. Lava Flow Hazard Map

	Lava Flow Hazard Level						
Consequences within the AOI	No Hazard	Very Low	Low	Medium	High	Very High	
Population (No of people)	88704	430577	289821	107947	214779	87798	
Build-up areas (sqkm)	8,430	34,265	18,086	6,295	12,786	5,224	
Assets (Nr)	No Hazard	Very Low	Low	Medium	High	Very High	
Airport	-	5	1	10	7	-	
Port	3	-	6	-	6	-	
Commercial Public and Private Services	89	334	132	47	108	68	
Industry and Utilities	13	65	66	69	68	25	
Place of worship	-	8	1	1	2	2	
Other	6927	68124	36856	12120	26535	11967	
Transportation Network (km)	No Hazard	Very Low	Low	Medium	High	Very High	
Primary	8,055	9,981	8,971	4,163	9,270	4,033	
Secondary	6,553	7,486	2,291	1,544	1,207	1,399	
Tertiary	1,999	16,149	7,774	3,933	7,663	7,816	
Local and service	69,741	466,343	311,527	99,086	191,820	89,015	
Other	19,507	40,262	28,272	11,518	25,911	9,829	
Bridges (Nr)	8	1	-	-	-	-	
Tunnel (Nr)	-	3	-	-		-	

Consequences within the AOI	Lava Flow Hazard Level					
LU/LC (sqkm)	No Hazard	Very Low	Low	Medium	High	Very High
Abandoned land	-	0,190	0,100	0,039	0,047	0,031
Urban fabric	7,517	29,000	15,691	5,310	10,683	4,464
Industrial, commercial and transport	0,766	4,611	2,137	0,904	1,983	0,717
Mine, dump and construction sites	0,131	0,174	0,071	0,021	0,041	0,006
Artificial, non-agricultural vegetated areas	0,016	0,291	0,086	0,020	0,033	0,006
Arable land	1,030	10,946	6,250	2,109	4,651	1,614
Permanent crops	4,453	0,802	0,048	0,022	0,030	0,007
Pastures	0,429	7,669	6,117	2,246	5,191	1,525
Heterogeneous agricultural areas	16,811	12,434	6,912	2,533	6,544	2,098
Forests	1,392	27,931	14,593	3,002	4,377	0,614
Shrub and/or herbaceous vegetation associations	0,247	44,732	29,316	9,909	17,694	4,483
Open spaces with little or no vegetation	0,055	1,996	1,103	0,649	2,229	1,949
Inland wetlands	-	0,019	0,008	-	0,015	-

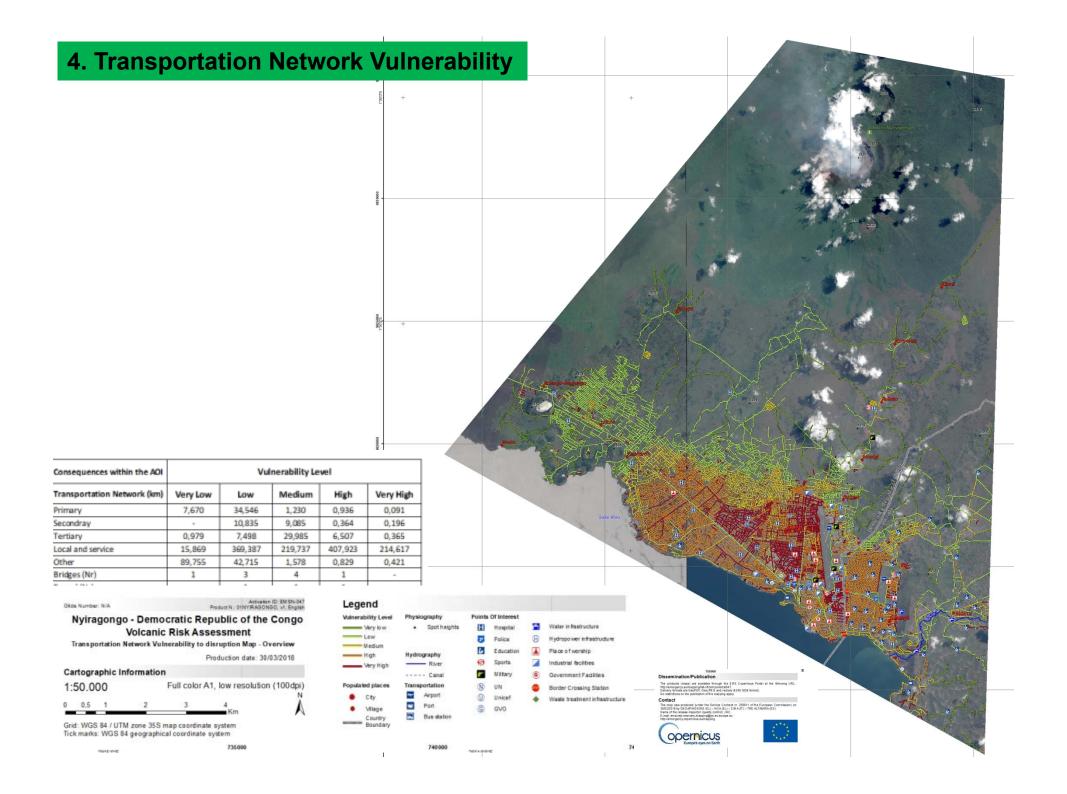
Legend Lava Flow Hazard Evacuation

Very Low

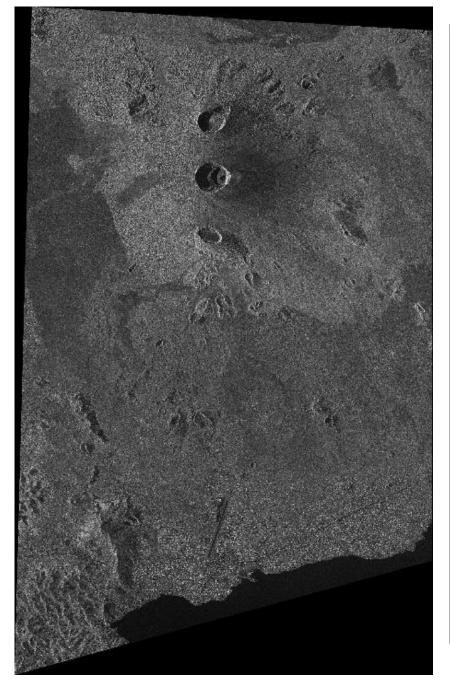
Medium

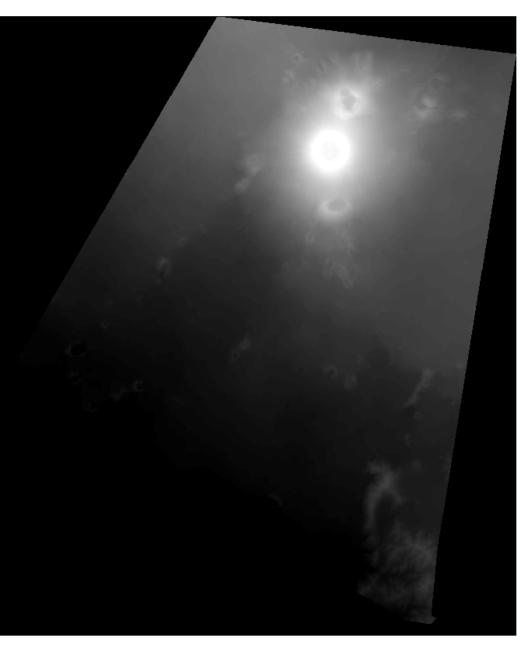
Very High

Port


Low

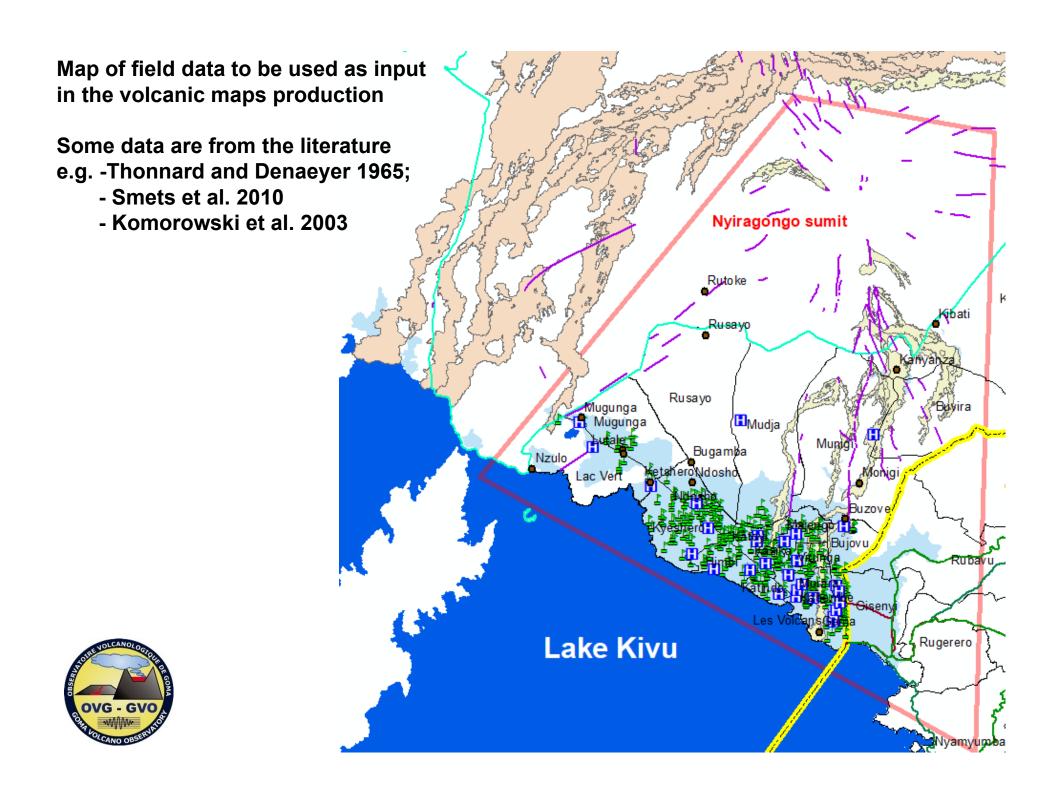
Nyiragongo - Democratic Republic of the Congo Volcanic Risk Assessment


Lava Flow Hazard Map - Overview


Production date: 30/03/2018

Cartographic Information Full color A1, high resolution (300dpi) 1:50.000 Grid: WGS 84 / UTM zone 35S map coordinate system Tick marks: WGS 84 geographical coordinate system

5. Very Highly Resolution DEM to simulate lava flow pathways for future eruptions



2.2. Field data were acquired in collaboration with Rwanda

1. Avaible Geospatial Data for Nyiragongo Volcano:

- a. Nyiragongo and Nyamulagira historical (1938 to present) lava flows shapefiles
- b. Nyiragongo and Nyamulagira eruptive fissures
- c. Nyiragongo 1977 and 2002 eruptions eruptive vents
- d. Road Network for both Goma (DR Congo) and Gisenyi (Rwanda) cities and surroundi
- e. Urbain area shapefiles for both Goma and Gisenyi cities and surroundings villages
- f. Hydrographic Network in the study area
- g. Fuel stations location
- h. Hospitals location in both Goma and Gisenyi cities
- i. Schools (primary, secondary and university) location in both Goma and Gisenyi cities
- g. Administrative limits shapefiles for Goma and villages around, and Gisenyi



2. Ground Contol Points for the High Resolution Image

Overview of the five (5) Differential GCPs

Overview of the six (6) extra GCPs

- Map of Activations of Other Organizations
- Map Coverage Planner
- Meetings, Workshops
- Citation Guidelines
- Citations
- Press Mentions
- Calls for Tender

Follow @CopernicusEMS

Activation Factsheet: EMSN047-Factsheet.pdf (new)
Activation Final Report: EMSN047-Final_Report.pdf

Download: EMSN047_UTM35S_V03.gdb_.rar, EMSN047_GOMA_DEM_5m.rar

Filter by map type: ALL TRANSPVULNERABILITY LAVAFLOWHAZARD LULC REFERENCE

[EMSN047] Nyiragongo: Transportation Network Vulnerability to disruption Map - Volcanic Risk Assessment (Overview)

Published: 2018-03-30 00:00:00 (UTC)

Product version: v1 Map scale: 1:50000

Status:

Production finished

Downloadable items

PDF: 100 DPI 300 DPI JPEG: 100 DPI 300 DPI

[EMSN047] Nyiragongo: Lava Flow Hazard Map - Volcanic Risk Assessment (Overview)

Published: 2018-03-30 00:00:00 (UTC)

Product version: v1 Map scale: 1:50000

Status:

Production finished

Downloadable items

PDF: 100 DPI 300 DPI JPEG: 100 DPI 300 DPI

[EMSN047] Nyiragongo: Land Use and Land Cover Map - Volcanic Risk Assessment (Overview)

Published: 2018-03-30 00:00:00 (UTC)

Product version: v1 Map scale: 1:50000

Status:

Production finished

Downloadable items

PDF: 100 DPI 300 DPI JPEG: 100 DPI 300 DPI

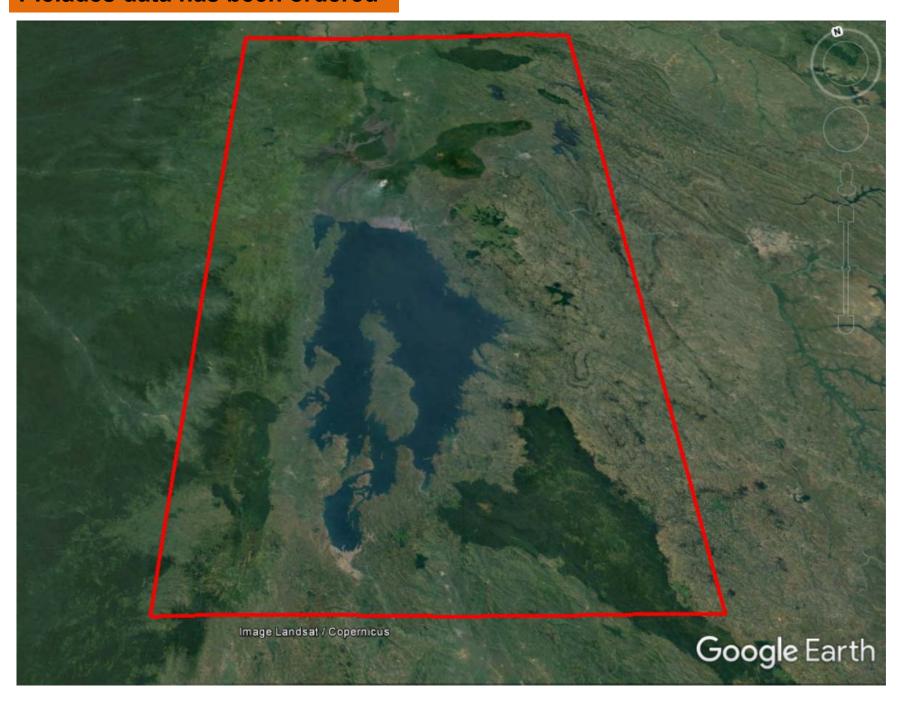
[EMSN047] Nyiragongo: Reference Map - Volcanic Risk Assessment (Overview)

Published: 2018-03-30 00:00:00 (UTC)

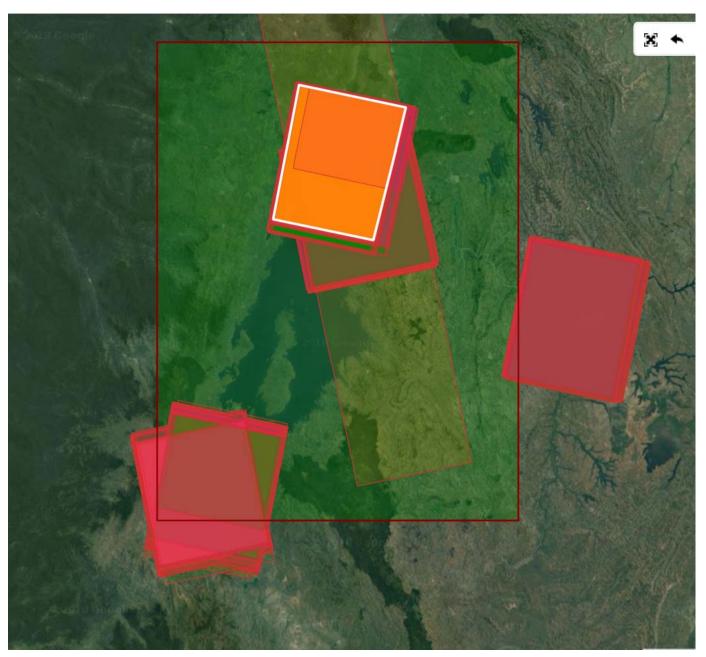
Product version: v1 Map scale: 1:50000

Status:

Production finished

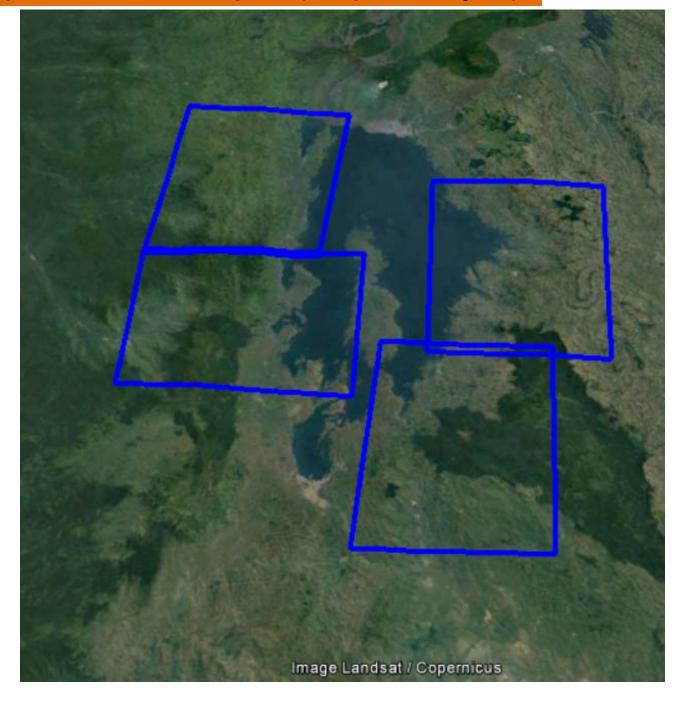

Downloadable items

PDF: 100 DPI 300 DPI JPEG: 100 DPI 300 DPI


2.3. The CEOS supports the Virunga Supersite with COSMO-Skymed and Pleiades

Agenzia Spaziale Italiana (ASI)	COSMO-Skymed: entire archived imagery over the AOI + 100 new products/year for a period of 2 years			
Centre National d'Etudes Spatiales (CNES)	Pleiades: quota of 9 images tristereo (on the basis of one Pléiades monoscopic scene 400km2) / year which is roughly equivalent to 3.600km² of tristereo acquisitions / year, for a period of 2 years. Total ~22.000 km².			

Pleiades data has been ordered



COSMO-Skymed data ordering is ongoing

Archives:More than 300 images for each frame

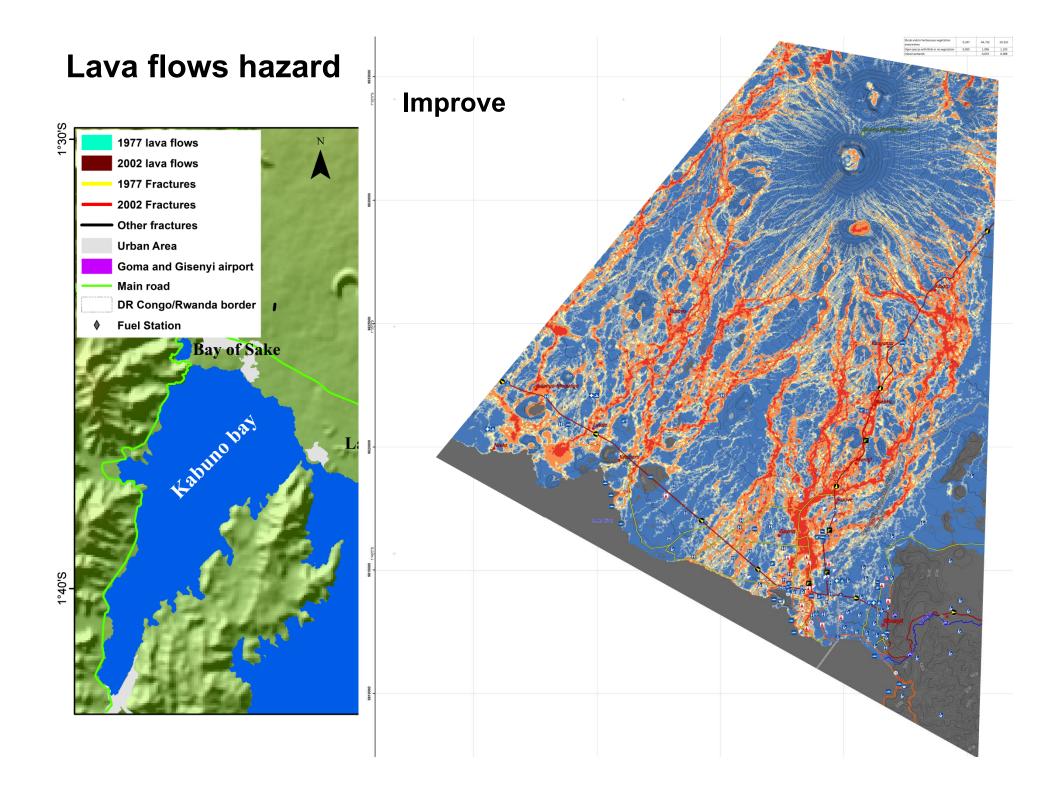
New acquisition for annual quota (100 products/year)

The InSAR data team:

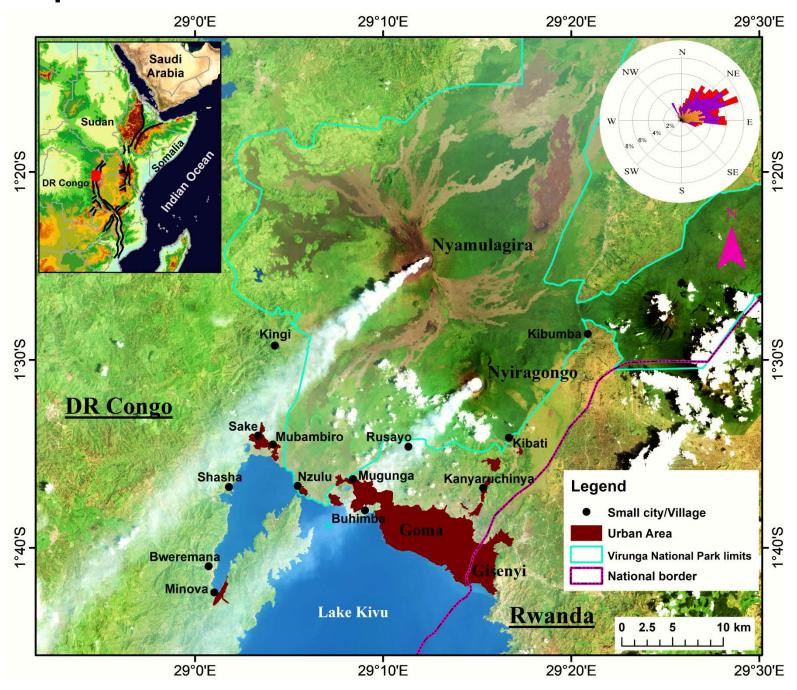
_#	Name	Institution	Country
1	Bagalwa Rukeza Monfort	Goma Volcano Observatory	RD Congo
2	Charles Balagizi	Goma Volcano Observatory	RD Congo
3	Sandra M. Nzamu	Goma Volcano Observatory	RD Congo
4	Fikiri Migabo	Goma Volcano Observatory	RD Congo
5	Jonathan Kavuke	Goma Volcano Observatory	RD Congo
6	King Iragi	Goma Volcano Observatory	RD Congo
7	Gentil Balezi	Goma Volcano Observatory	RD Congo
8	Rigobert Bahati Birembano	Institut Supérieur Pédagogique de Bukavu	RD Congo
9	Richard Birindwa Cubwe		RD Congo
10	Gustave Byabuze	Institut Géographique du Congo	RD Congo
11	Fiama Bondo Silvanos	CRSN/Lwiro	RD Congo
12	Guy Shungu	University of Goma	RD Congo
13	Mike Poland	USGS	USA
14	Michael Lisowski	USGS	USA
15	Estelle Chaussard	State University of New York at Buffalo	USA
16	Mauro Coltelli	INGV	Italy
17	Mario Matia	INGV	Italy
18	Diego Copolla	Università di Torino	Italy
19	Mariarosaria Manzo	Consiglio Nazionale delle Ricerche (CNR)	Italy
20	Pieter Rottiers	BELSPO	Belgium
21	François Kervyn	MRAC	Belgium
22	Nicolas d'Oreye	NMNH/ECGS	Belgium
23	Dominique Derauw	CSL/ECGS	Belgium
24	Ludivine Libert	CSL	Belgium
25	Adriano Nobile	MRAC	Belgium
26	Antoine Dille	MRAC	Belgium
27	Halldor Geirson	ECGS	Belgium

2.4. Natural hazards assessment in the Virunga and Lake Kivu basin

Nat Hazards (2018) 93:31–66 https://doi.org/10.1007/s11069-018-3288-x


ORIGINAL PAPER

Natural hazards in Goma and the surrounding villages, East African Rift System


Charles M. Balagizi¹ · Antoine Kies² · Marcellin M. Kasereka¹ · Dario Tedesco³ · Mathieu M. Yalire¹ · Wendy A. McCausland⁴


Received: 30 September 2016/Accepted: 25 March 2018/Published online: 31 March 2018 © Springer Science+Business Media B.V., part of Springer Nature 2018

Abstract The city of Goma and its surrounding villages (Democratic Republic of the Congo, DRC) are among the world's most densely populated regions strongly affected by volcanic hazards. In 2002, Nyiragongo volcano erupted destroying 10-15% of Goma and forced a mass evacuation of the population. Hence, the ~ 1.5 million inhabitants of Goma and Gisenyi (Rwanda) continue to live with the threat of new lava flows and other eruptive hazards from this volcano. The current network of fractures extends from Nyiragongo summit to Goma and continues beneath Lake Kivu, which gives rise to the fear that an

Gas plume and ash emissions

Rainwater represents an important water resource

Water pollution

Contents lists available at ScienceDirect

Applied Geochemistry

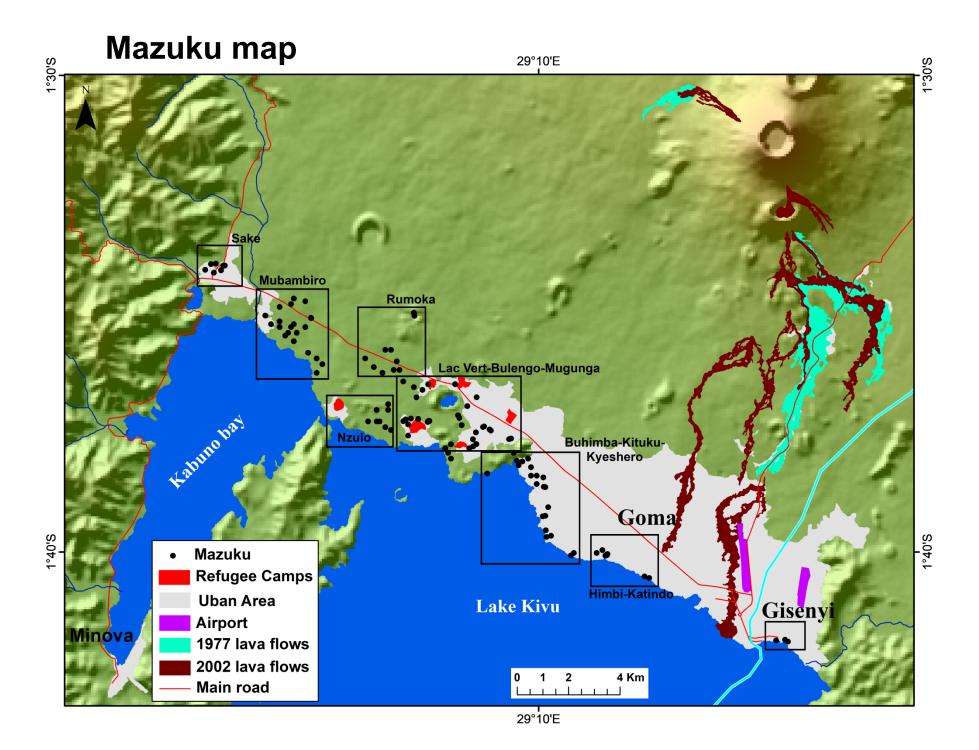
journal homepage: www.elsevier.com/locate/apgeochem

Rain-plume interactions at Nyiragongo and Nyamulagira volcanoes and associated rainwater hazards, East Africa

Charles M. Balagizi a, *, Marcellin M. Kasereka a, Emilio Cuoco b, Marcello Liotta c

- a Geochemistry and Environmental Department, Goma Volcano Observatory, 142, Av. Du Rond-point, Goma, Democratic Republic of the Congo
- b Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università Degli Studi di Napoli, Via Vivaldi 43, 81100 Caserta, Italy
- c Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Palermo, Via Ugo La Malfa, 153, 90146 Palermo, Italy

ARTICLEINFO


Article history: Received 8 November 2016 Received in revised form 3 March 2017 Accepted 30 March 2017 Available online 5 April 2017

Editorial handling by Prof. M. Kersten.

Keywords: Nyiragongo volcanic plume Rainwater chemistry Acid-driven ash dissolution Rainwater quality Dental fluorosis

ABSTRACT

A rain-gauge network consisting of 13 stations was installed on the volcanic fields around Nyiragongo and Nyamulagira volcanoes, as well as in the surrounding villages and Goma city (DR Congo) from December 2013 to October 2015. The rain gauges were then sampled on a monthly basis in order to evaluate the influence of volcanic emissions on rain chemistry and rainwater quality. This is the first temporally distributed dataset of rain chemistry from this densely populated region, where the two Africa's most active volcanoes, 14 km apart, continuously eject gases and ash to the atmosphere and where rainwater represents an important water resource. The results revealed that volcanic emissions are the primary source of the dissolved loads. Wind-blown dust dissolution is in fact occasionally the dominant source of major cations at cities and villages that are remote with respect to the volcano summits. A few sites located in the forested Virunga National Park are neither significantly impacted by volcanic emissions nor wind-blown dust. The combined contribution of volcanic gases and the dissolution of volcanic ash and soil dust determined the pH of the rainwater. Thus, areas with limited volcanic impact showed lower pH values (as low as 3.1), as a consequence of the continuous input of acidic volcanic gases. The

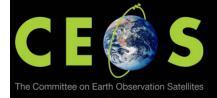
3. Present and future challenges

Capacity building and equipment for ground based data collection !!!!

(1) Capacity building of local scientists

- (1) 1 USGS-VDAP- could support GVO's capacities for InSAR data analysis and interpretation for volcano monitoring
- (1) 2 INGV will support GVO's capacities for SAR data analysis and interpretation for volcano monitoring.
 - INGV will also provide 2 kinematics GPS stations and Ion Chromatograph and provide training for their use.
- (2) Acquisition of ground based data to be shared among the Supersite scientific community.
 - => You have an equipment that may help, please contact us!
- (3) We have written a project to support the supersite activities
 - → looking for funding sources.

Thanks to our partners



Thanks for your attention