QA4EO SAR Implementation

CEOS WGCV 37th Plenary ESRIN, Frascati/Italy February 17-20, 2014

M. Zink

Chair CEOS WGCV SAR Subgroup German Aerospace Center (DLR) manfred.zink@dlr.de

CESS

http://sarcv.ceos.org

QA4EO Elements in Operational SAR Missions

- Requirements specification (quality indicators)
- Reference standards (calibration targets)
- QA-processes:
 - Commissioning phase (incl. pre-launch verification)
 - Long-term system monitoring
 - Systematic product QA

Requirements Specification

CSAR and Transponder Requirements

Parameter	CSAR Requirement
Maximum Point Target Radar Cross Section	75 dBm ²
Transmit polarisation CSAR Receive polarisation Transponder	H or V
Transmit polarisation Transponder Receive polarisation CSAR	H and V
H to V imbalance	15 degrees
Radiometric accuracy	1.0 dB (3σ)
Radiometric stability	0.5 dB (3σ)
Time Delay	
Accuracy of the antenna pattern estimation or accuracy of the transponder receiver mode	0.1 dB within the swath1.0 dB at -20 dB level with respect to the maximum0.2 dB of absolute gain
Dynamic range of the receiver mode	
Pixel·localisation	2.5 - 10 m (3σ) depending on the mode

well-defined quality indicators

www.DLR.de/HR • VG 5 <CEOS 2013-10, S-1A CAL Scenario> • <Satellite-SAR-Systems> • <Calibration> • <Schwerdt> Commissioning Phase

In-Orbit Calibration Plan

Elevation Antenna Model Verification over Rainforest

 Homogeneous RCS

Commissioning Phase

- ScanSAR-Mode Several Beams measured during one Pass
- across an Area of 750 km x 750 km

Accuracy of Shape and Beam-to-Beam Gain Offset

27-July-2011 Schwerdt, Folie 6

Radiometric stability from transponder data

Long-Term System Monitoring

DGCF, 2000-present, from all transponders

 $DGCF(dB) = RCS_{true} - RCS_{est}$

Point Target Analysis – Radiometric Stability

TMSP Daily Production QA Web Page

005509 L1B NSG TSX1 1940 2013-10-08T191912.02600	SM	s	strip_012	0	AUTO_APPROVED	Undefined	 ок	0	0	0	▲
010120 L1B NSG TDX1 12001 2013-10-08T102930.35300	SM	s	strip_007	o	AUTO_APPROVED	Undefined	 ок	0	0	0	1
010153 L1B NSG TDX1 12017 2013-10-08T220951.08785	SM	s	strip_012	o	AUTO_APPROVED	Undefined	 ок	0	0	0	
010512 L1B NSG TDX1 12018 2013-10-08T230232.50328	SM	s	strip_019	0	AUTO_APPROVED	Undefined	 ок	0	0	0	
010528 L1B NSG TDX1 12022 2013-10-08T230214.21260	SM	s	strip_007	0	AUTO_APPROVED	Undefined	 ок	0	0	0	
010844 L1B NSG TDX1 12016 2013-10-08T230049.57302	SL	s	spot_057	o	AUTO_APPROVED	Undefined	 ок	0	0	0	5.5
010942 L1B NSG TDX1 11981 2013-10-08T013928.92375	SM	s	strip_009	0	AUTO_APPROVED	Undefined	 ок	0	0	0	
011322 L1B NSG TSX1 1926 2013-10-08T062039.23416	SM	s	strip_013	o	AUTO_APPROVED	Undefined	 ок	0	0	0	
011340 L1B NSG TDX1 12020 2013-10-08T183923.19800	sc	s	scan_007	0	AUTO_APPROVED	Undefined	 !!	0	0	0	
011738 L1B NSG TSX1 1919 2013-10-08T000503.40185	HS	s	spot_079	0	AUTO_APPROVED	Undefined	 ок	0	0	0	
011816 L1B NSG TSX1 1925 2013-10-08T061740.23435	SM	s	strip_010	0	AUTO_APPROVED	Undefined	 ок	0	0	0	
012234 L1B NSG TDX1 11974 2013-10-08T010414.49634	SL	s	spot_077	0	QA_ATTENTION	LIMITED_APPROVAL (set by K.Jahncke: geoFDC, CenOFF 522.12 m, EWP)	 ок	0	0	5	
012520 L1B NSG TDX1 12021 2013-10-08T230743.71100	SM	s	strip_003	0	AUTO_APPROVED	Undefined	 ок	0	0	0	

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

QA4EO Elements in Operational SAR Missions (cont.)

Comparison with peers

 Comparative calibration has been on the agenda of the SAR subgroup since the first meeting in 1989

Procedures and Documents Management

 Implementation of SAR missions follows ECSS or equivalent standards, where documentation is a key topic

Data Sharing and Exchange Principles

• Depends on Data Policy, there is a tendency to free and open access to Level-1b SAR products (e.g. Sentinel-1)

