

TANSAT MISSION

GLOBAL CARBON DIOXIDE
OBSERVATION AND MONITORING

Shanghai Engineering Center for microsatellites

L maringania in

2013.5

Outline

- Mission Background
- Scientific Instruments
- Observation Modes
- **Cal/Val**
- Current Status
- Development Schedule

2013/5/28

To retrieve the atmosphere column-averaged CO2 dry air mole fraction (XCO2) with precisions of 1% (4ppm) on national and global scales.

Greenhouse Observation Missions

2002 2009 2012 2014 2015

- Founded by NRSCC, The project started at the beginning of 2011
- > Tansat is planed to be launched in 2015

TanSat(2015.7~2018.6)

Payload of TanSat

Platform

CO2 Spectrometer

Cloud and Aerosol Polarimetry Imager (CAPI)

A wide field of view moderate resolution imaging spectrometer with polarization channel

CO2 Spectrometer

Optical Schematics

	O2-A	CO ₂ weak	CO ₂ Strong
Spectral Range(nm)	758-778	1594-1624	2042-2082
Spectral Resolution	0.044	0.081	0.103
SNR	360	250	180
Spatial Resolution	1km×2km, 2km×2km		
Swath	20km		

Cloud and Aerosol Polarimetry Imager

1	0.38µm
2	0.67μm_0°、 0.87μm
3	0.67μm_60°、 0.67μm_120°

4	1.375μm、 1.64μm_0°
5	1.64μm_60°
6	1.64μm_120°

	Band (nm)	SNR	Polarization (deg)	FOV	Pixel Num.
1	365-408	260			1600
2	660-685	160	0/60/120	400×	1600
3	862-877	400		400^ 1km²	1600
4	1360-1390	180		TKM-	800
5	1628-1654	110	0/60/120		800

Observation Modes

Nadir mode

- land observation
- solar zenith angle < 80 deg
- Principle plane track

Sun-glint mode

- Ocean observation
- solar zenith angle<70 deg
- Principle plane track

Cal/Val

- Specification
 - 5%(absolute), 3%(relatively)
- CO2 Spectrometer(Once a day)
 - Cal:
 - LED in instrument for spectrometric
 - Sun Calibration (by diffuser)
 - ✓ Spectrometric: look through atmosphere(limb)
 - ✓ Radiometric: look directly to
 - Val
 - TCCON

CAPI(radiometric, once a month)

- Calibration
 - LED in instrument
 - Sun: for relative and absolute
 - Moon for redundancy of Sun
- TCCON for Validation

2013/5/28

Ground Validation Stations

Ground-based Measurement Sites in China

Ground sites

 $\mathbf{11}$

Validation Equipments

Radiation mea

Pointing Sequence

No	Pointing Mode	Attitude description
1	Principal Plane Nadir	Zs points along Nadir, under Principal Plane constraints
2	Sun-glint Pointing	Zs points to Sun-glint location, under Principal Plane constraints
3	Forward Nadir	+Xs points along velocity, Zs points along Nadir
4	Backward Nadir	-Xs points along velocity, Zs points along Nadir
5	Target Pointing	+Zs points to the target, small sinusoidal periodic slew on pitch axis
6	Area Steering	Fixed roll angle, maneuver on pitch axis, decreasing velocity to earth surface
7	Direct Solar Pointing	Xs points to the sun, periodic slewing, -90° mirror rotation
8	Diffusion Solar Pointing	Zs points to the sun with 15° bias on pitch axis, 180° mirror rotation
9	Moon Pointing	Zs points to the moon, small sinusoidal periodic slew on pitch axis
10	Solar Panel Pointing	-Xs points to the sun, Ys is parallel to earth equator plane
11	Attitude Slew	For pointing mode change

Nadir observation + Sun calibration

Mission Animation

2013/5/28

Soundings & Coverage

Coverage at Naidr/Sunglint mode

solar zenith angle	Nadir 80deg	Sunglint 70deg
vernal equinox	Lat [-73 79]	Lat [-66 70]
midsummer	Lat [-51 82]	Lat [-43 79]
midwinter	Lat [-82 56]	Lat [-86 46]

CO2 Spectrometer

- 3.3 Hz sample frequency
- 20 soundings each exposure time
- Spatial resolution: 2kmx1km
- 2 soundings merged to increase SNR

CAPI

- 27 Hz sample frequency
- 800 soundings each sample for VNIR, 500m resolution
- 400 soundings each sample for SWIR, 1km resolution

microsat

	-	
Item	Parameter	
Orbit	700 km, 13:30, Local Time	
Mass	~600 kg	
Power	420W ~ 610W 10m ² solar array Li-battery, 80Ah)
Dimensions	1500mm(Ys) × 1800mm(Zs) × 1850mm(Xs)	
AOCS	Attitude pointing accuracy: ≤0.1°; Pointing stability:≤0.001°/s; Slew rate: 180°/240s (Zs), 150°/100s (XsYs)	
Propulsion	4×1N thruster, 10kg propellant	
Data Link	X-band, 64 Mbps	
Data Storage	128 Gbits	
TT&C	S-band, Downlink 8192bps, Uplink 2000bps	
Design Life	3 years	

CO2 Retrival

Forward Model Framework

CO2 Retrival

Preliminary retrieval test

Lamont, Oklahoma, US 36.604 N, 97.486 W

Current Status – CO2 Sounder

760nm spectrometer prototype with partial fore-optics and small-area grating

Measured O2 absorption spectrum at 760nm with prototype

Compare with OCO measured result from reference data

1610nm spectrometer prototype

- same construction as 760nm channel
- use a large-area diffraction grating, the size is 190mm by 154mm
- use a long linear InGaAs FPA

2013/5/28

Large-area Grating Sample

- Low diffractive efficiency, high stray light and worse wavefront
- still obtain the clear spectrum
- improved technique adopted, new sample will be tested in June

Measured spectrum with 1610nm prototype

Payload Mechanical prototype

- Main frame is cast with aluminium alloy
- 960mm by 900mm by 540mm

- Satellite electrical interface tests in 2012.8
- Satellite mechanical test in 2013.1
- Satellite thermal test in 2013.4

EM of Onboard Computer

Satellite on vibration bench

Satellite in KM3

Development Plan

2011.2 Kick off of project

2011.9 SRR

2012.9 PDR

2013.6 Kick off phase C

2014.5 CDR

2015.6 SRR

TanSat is to be launched in 2015!

