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Why Sl Traceable?

Common measurement scale

— Independent of measurement condition (time, space, source
conditions, etc.)

— Intercomparisons performed under controlled conditions
— Results can be duplicated or improved as technology evolves
— There is no physics without relevant measurement equations

Good measurement practice

Evaluation of uncertainty budget

Documentation of measurement metrology
Traceability ensures proper relation of national scales



Establishing Claims of Traceability
(the supplier)

« Define what is measured, e.g. E((A), L ()

» Describe measurement system (ideally archival, peer-
reviewed papers)

e Stated measurement result with documented uncertainties
(web site, data archive)

« Description of stated reference (ideally archival, peer-
reviewed papers)

 Internal Measurement Assurance Program (MAP)
describing the status of the measurement system

 Internal MAP describing the status of the stated reference

http://ts.nist.gov/Traceability/



MAP Definition

A program of sufficient complexity, within an organization, to
provide credibility to the measurement uncertainty and
measurement result for which traceability is to be established. An
Internal measurement assurance program usually involves
monitoring the performance (e.g., stability, reproducibility) of the
Instrument, standard, or measurement system, both before and
after it is characterized and calibrated, or used to obtain the
traceable measurement result.



Traceability through Calibration

R |—| C R = reference; C = transfer; CS
KE = control standard; MA =
PR measurement artifact

Routine Calibrations

Internal MAP — execute before and after calibration

http://ts.nist.gov/Traceability/suppl_matls_for_nist_policy_rev.cfm



MOBY Lu(A) Example

Calibration Hut, Honolulu

SIRCUS| —— | SLMs

Ref. Lab

The spheres and the SLMSs are sent to NIST. The SLMs
measure the spheres every time the buoy is calibrated. The
VXR is a separate validation (annually).




MOBY Procedures

Rotate Buoy 4x/year

Pre- and Post Calibrations

E and L sources NIST-traceable
Sources recalibrated every 50 h

Sources verified during use with
SLMs (NIST-designed radiometers)

Daily scans of three internal sources
(blue and red LED; lamp)

Monthly measurements with stable,
diver-deployed lamps

Detailed instrument characterization

Validation with independent artifacts

Site characterization



Additional Cal/Val Elements

Reference Detector

l MOBY Arm

On-site measurements by NIST using NIST
Portable Radiance (NPR) source and
NIST/EOS Visible Transfer Radiometer
(VXR) — performed annually
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Site Characterization - BRDF
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Ken Voss, U Miami



Site Characterization - Uniformity

Discrete Fluorometric CHI a
7-8 May 2004 [yd 128-129] 2200-0200 GMT
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Ship time is dedicated to
mapping the ocean waters
around MOBY for bio-
optical properties.

20_51.I o 5 :. .............. °. — I20.51.

Std. D. =0.002
Mean =0.081
C.V.=26%

"".’.‘-""'@"""----.=. ________ . I
20° 48II \t . 20° 48'




Site Characterization — Self Shading

Final Report, NOAA Grant NAOINES4400007

FI: James L. Mueller

CHORS, San Diego State University Research Foundation 22007
MOBY Shadow Correction Factor:
Thetal = 30, bB = 0.010
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Fig. 6.6: Spectral distobution of MOBY Self-Shading Factors for
b, =0010 & (8,.¢,)=(30"180°) and Chl =0.10 (Blue) and 0.20 (Green).
[Cf. Fig. 6.5a above] Inmcrease in self-shading with increasing Chi 13
significantly apparent above the Monte Carlo noise level for wavelengths
< 515 nm, but becomes lost m the mcreased noise of solutions as absorption
by water mereases rapidly with increasing wavelength beyeond that.

Theoretical and experimental
approach Is in progress;
Important for the red and near
infrared spectral regions.




Land Analogue

» Transfer artifacts (send to the reference lab):

— FEL (irradiance lamps); diffuse reflectance standards
(BRDF); radiometers (e.g., ASD)

« User calibration laboratory MAP: characterize
field radiometers:; calibrate with lab standard
e Field measurements:

— the solar-1lluminated reflectance standard is the
reference standard:;

— Site characterization is required.



Prioritize Efforts

« Perform measurement intercomparison

* Follow previous examples
— UV downwelling spectral irradiance
— SIRREX and SIMBIOS exercises
— Ambient IR intercomparison (Miami)
— Lunar Lake 1997 (laboratory effort tied to field
program)
» Design experiments that identify instrument
characterization issues



Backup Slides



Atmospheric Correction
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Stan Hooker, SeaWiFS Project

In-water vicarious ocean color
calibration utilizes the NIR
channels of the satellite to
determine atmospheric
parameters.



Gain Coefficient

Gain Coefficient
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Stability of MOBY Scale
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Franz et al. 2007, Apl Opt Vol 46, No 22




Total Solar Irradiance

TSI Measurement Uncertainty Requirement ~ 0.02% (0.3 W m-) decade’!

TOTAL SOLAR IRRADIANCE MONITORING RESULTS: 1978 to Present If the spread is real,
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RC Willson, earth_obs_fig1 11/30/2006
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then TSI has changed
<1%in 25Y.
However, most of the
differences must be
measurement bias.
There are also
corrections for sensor
degradation on orbit
that are controversial.

None or ~0.5W/m?
change between solar
minimum, depending
on analysis.

Note — no
uncertainties
reported!



Trending Through Sensor Overlap—
Necessary But Not Sufficient

Climate Variable

Observations using calibrated sensors.
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Which composite is correct? Is there
common instrument drift, climate
change, or both?

Sensor Drift: Sl-based values (traceable) are
essential; independent determinations required.

Blaza Toman & Antonio Possolo, NIST



Scale Maintenance on Stable, Repeatable
Artifacts — Necessary But Not Sufficient
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NIST Irradiance Scale Realization:
Source-Based: 1990 (NIR & SWIR) and 1992
(UV, VIS, & NIR)

Detector-Based: 2000 (UV to SWIR)

Expanded uncertainties are the solid lines

These check lamps held the previous scale
very well; they are internally consistent ---

But, there was unknown bias in the previous
scale that became obvious when the
measurement metrology was changed.

Intercompare Results!!

Not shown: Uncertainties were reduced by x2
to x10, depending on wavelength.

H.W. Yoon et al., “Realization of the NIST detector-based spectral irradiance scale,” Appl. Optics 41

5879-5890 (2002).
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