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Free and open access to satellite imagery and value-added data products have revolutionized the role of remote
sensing in Earth system science. Nonetheless, rapid changes in the global environment pose challenges to the sci-
ence community that are increasingly difficult to address using data from single satellite sensors or platforms due
to the underlying limitations of data availability and tradeoffs that govern the design and implementation of cur-
rently existing sensors. Virtual constellations of planned and existing satellite sensors may help to overcome this
limitation by combining existing observations to mitigate limitations of any one particular sensor. While multi-
sensor applications are not new, the integration and harmonization of multi-sensor data is still challenging, re-
quiring tremendous efforts of science and operational user communities.
Defined by the Committee on Earth Observation Satellites (CEOS) as a “set of space and ground segment capabil-
ities that operate in a coordinated manner to meet a combined and common set of Earth Observation require-
ments”, virtual constellations can principally be used to combine sensors with similar spatial, spectral,
temporal, and radiometric characteristics. We extend this definition to also include sensors that are principally
incompatible, because they are fundamentally different (for instance active versus passive remote sensing sys-
tems), but their combination is necessary and beneficial to achieve a specific monitoring goal. In this case, con-
stellations are more likely to build upon the complementarity of resultant information products from these
incompatible sensors rather than the raw physical measurements. In this communication, we explore the poten-
tial and possible limitations to be overcome regarding virtual constellations for terrestrial science applications,
discuss potentials and limitations of various candidate sensors, and provide context on integration of sensors.
Thematically, we focus on land-cover and land-use change (LCLUC), with emphasis given tomedium spatial res-
olution (i.e., pixels sided 10 to 100m) sensors, specifically as a complement to those onboard the Landsat series of
satellites.We conclude that virtual constellations have the potential to notably improve observation capacity and
thereby Earth science andmonitoring programs in general. Various national and international parties havemade
notable and valuable progress related to virtual constellations. There is, however, inertia inherent to Earth obser-
vation programs, largely related to their complexity, aswell as national interests, observation aims, and high sys-
tem costs. Herein we define and describe virtual constellations, offer the science and applications information
needs to offer context, provide the scientific support for a range of virtual constellation levels based upon appli-
cations readiness, capped by a discussion of issues and opportunities toward facilitating implementation of vir-
tual constellations (in their various forms).

Crown Copyright © 2015 Published by Elsevier Inc. All rights reserved.
1. Introduction

Remotely sensed observations acquired from Earth orbiting space-
craft are fundamental to understanding Earth system functioning and
the effects of natural and human-induced changes on the global envi-
ronment (Cohen & Goward, 2004). Since the launch of the first Landsat
).

r Inc. All rights reserved.
sensor in 1972, active and passive remote sensing has provided critical
input to Earth system models, ranging from atmospheric composition
to the status of the terrestrial biosphere (Belward & Skøien, 2015). The
scientific and technological progress in Earth observation over the last
40 years is unparalleled; however, the challenges faced by the Earth sci-
ence community are immense: global climate has now entered a period
of rapid change as humans are altering the composition of the atmo-
sphere (McMullen & Jabbour, 2009; Woods, Heppner, Kope, Burleigh,
&Maclauchlan, 2010), and scientists are facedwith the task of assessing
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the risks associated with these changes, their feedbacks on the global
carbon and energy cycle, and the consequences for life on Earth
(Bentz et al., 2010; Kurz et al., 2008; Price et al., 2013).

Themost recent report of the IPCC (2014) outlines the links between
anthropogenic activity and observed changes in the climate system.
These human activities include changes to global land cover and land
use, with associated ramifications that range from the capacity of
Earth systems to sequester CO2 from the atmosphere and absorb solar
energy (Pielke et al., 2002), through to the alteration of the natural dis-
turbance regimes of forested ecosystems (Dale et al., 2001). The way in
which land is used results in difficult trade-offs between meeting pres-
ent day human needs (food, shelter, economic opportunity) while also
maintaining the future capacity of the biosphere to continue meeting
those same needs (Foley et al., 2005). Land use conversions are often
made to accommodate human needs for agricultural production, living
or commercial space, as well as industrial or transportation infrastruc-
ture. Depending on the type of conversion, permanent changes in land
cover can have a range of impacts, such as a loss of carbon stocks as a re-
sult of biomass burning or conversion of forests to agricultural lands
(Fearnside, 2000; Pielke et al., 2002) as well as changes to the provision
of a broad range of ecosystem services (Naidoo et al., 2008).

The rapid nature and the scale of land-cover and land-use change
(LCLUC) poses challenges to the remote sensing community, as a full
understanding of anthropogenic impacts and their feedbacks on ecosys-
temswill require frequent (Scheller et al., 2007) and comprehensive ob-
servations across large areas (Hansen et al., 2008; Laurance et al., 2012;
Townshend et al., 2012). From regional and global monitoring perspec-
tives, despite the progress made over the last several decades, contem-
porary scientific advancement remains limited by the data available to
researchers and the trade-offs between spatial, temporal, spectral, and
radiometric sensor characteristics that govern remote sensing instru-
ment design (Wulder et al., 2008). For instance, high spatial resolution
imagery typically results in a smaller image footprint, or spatial extent,
thereby increasing the time it takes for a satellite to revisit the same lo-
cation on Earth (Hilker, Wulder, Coops, Linke, et al., 2009; Hilker,
Wulder, Coops, Seitz, et al., 2009). It is worth noting that reported tem-
poral revisit of high spatial resolution sensors includes the use of
pointable observatories. As an example, the revisit time for a given loca-
tion can be about 4 days using off-nadir viewing (both cross-track and
in-track), or 144 days if true nadir viewing is required (Wulder,
Ortlepp, White, & Coops, 2008). While some deviation off nadir may
be required to create more data collection opportunities, tolerance for
off-nadir viewing is determined by the needs of a given application
and by consideration of factors such as the level of geometric and illumi-
nation consistency required for automated applications over time, both
for objects of interest (i.e., trees), and between adjacent images
(Wulder, White, et al., 2008; Wulder, Ortlepp, White and Coops,
2008). High temporal resolution sensors such as NOAA's Advanced
Very High Resolution Imaging Spectroradiometer (AVHRR) and NASA's
Moderate Resolution Imaging Spectroradiometer (MODIS) have a more
frequent revisit rate (daily) coupled with a wider imaging swath,
resulting in wide-area coverage at a lower spatial resolution (Holben,
1986; Roy et al., 2008). Outside of government realms, there are suc-
cessful examples of commercial satellite constellations, including DMC
and BlackBridge RapidEye (Powell, Pflugmacher, Kirschbaum, Kim, &
Cohen, 2007). Constellations (or swarms) of microsats (including
cubesats) are also emerging (Hand, 2015; Butler, 2014). Generally of
notably lower cost and operating at lower orbits with a small total sat-
ellite size and weight, these microsats have radiometric and geometric
considerations that remain to be addressed (Butler, 2014). The presence
of this wide range of sensors offers users with options for sourcing data,
aswell asmany considerations to ensure compatibility and rigor in sub-
sequent analyses.

One approach to helpmeet application and information needswhile
alsomitigating the aforementioned challenges, as summarized above, is
to combine sensors with similar characteristics into so-called virtual
constellations. Satellite constellations have long been used to add value
to Earth observations by combining sensors with complementary char-
acteristics. For example, NASA's “afternoon constellation” (so-called “A-
train”) consists of satellites passing in the same sun-synchronous polar
orbit within minutes of each other (http://www.nasa.gov/mission_
pages/a-train/a-train.html). This formation flying allows near-
simultaneous observations of a variety of parameters to aid the scientific
community in understanding Earth–atmosphere interactions and ad-
vancing Earth system science. The value of the near simultaneous mea-
sures associatedwith the A-train has been recognized, and the potential
inclusion of any new satellite in the A-train is nowundertakenwith spe-
cifically designed scientific objectives in mind (e.g. Stephens et al.,
2002). Virtual constellations are similar in concept, but have come
from more organic beginnings. Virtual constellations capitalize on
existing capacities of current sensors and their orbits with the aim to
identify and understand possible synergies of satellite observations
from sensors with similar spatial, spectral, temporal, and radiometric
characteristics in order to expand the scope of space-based Earth system
science by producing a consistent and calibrated set of Earth observa-
tions to meet the needs of a particular domain area. The Committee
on Earth Observation Satellites (CEOS) defines virtual constellations as
a “set of space and ground segment capabilities that operate in a coordi-
nated manner to meet a combined and common set of Earth Observa-
tion requirements.” Herein, we broaden this definition to include
virtual constellations in which the sensors themselves may have dispa-
rate characteristics and observations, but they offer complementary in-
formation that is of synergistic value. In this paper, we review the
potential of virtual constellations for LCLUC and describe the concept,
motivation, characteristics, and forward-going opportunities for the de-
velopment of virtual constellations targeted at monitoring LCLUC. In so
doing, we characterize three different types of virtual constellations ac-
cording to their application-readiness. We discuss the potential of virtual
constellations for improving and complementing medium spatial resolu-
tion (pixel resolution of 10–100 m) data sets, addressing spatial versus
temporal trade-offs, as well as overall benefits for land surface observa-
tions. Our overarching objective is to elucidate the potentials of virtual
constellations for LCLUC and identify key research priorities that could
support implementation and expand opportunities for virtual constella-
tions to contribute toward enhanced global monitoring capacity.
2. Land-cover and land-use change mapping context for virtual
constellations

LCLUC is the complex result of a combination of resource scarcity,
market opportunities, policy intervention, and changes in social organi-
zation and attitudes (Rindfuss, Walsh, Turner, Fox, & Mishra, 2004;
Lambin, Geist, & Lepers, 2003). In recent years, the study of LCLUC has
moved from simplistic representations of change to recognition of a
complex co-evolution of natural and social systems across different spa-
tial and temporal scales (Lambin et al., 2003; Lepers et al., 2005). While
significant progress has been made in reducing LCLUC uncertainties,
much remains to be learned about interactions between changes in veg-
etation properties on one side, and carbon sequestration, provision of
ecosystem services, maintenance of biodiversity, and ecosystem degra-
dation on the other (McKinley et al., 2011; Rittenhouse & Rissman,
2012). For instance, initial research has focused on land-cover conver-
sions (i.e., the complete replacement of one cover type by another) as
amajor contributor to land carbon emissions, but in recent years the im-
portance of more subtle land-cover modifications and ecosystem degra-
dation has increasingly been recognized (Lambin et al., 2003; Houet
et al., 2009). Both land-cover conversions and modifications can be dif-
ficult to detect in the presence of phenological and climate related inter-
annual changes in vegetation (Singh, 1989), yet their impact on ecosys-
tems and carbon cycling is considerable (Foley et al., 2005). A compre-
hensive understanding of LCLUC therefore requires observations and
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modeling at a range of spatial and temporal scales (Parker, Manson,
Janssen, Hoffmann, & Deadman, 2003).

More coarse spatial resolution sensors (≥300 m) have been used
predominantly for global to regional analysis of land systems (Friedl
et al., 2002), due to their wide-area coverage and high revisit frequency.
One major reason for the broad acceptance of the MODIS sensor in the
user community is the provision of standardized reflectance composites
(Schaaf et al., 2002) and higher-level products (Justice et al., 2002),
combined with free data access and quality assessment (Roy et al.,
2002). Notwithstanding these advantages, pixels with this spatial reso-
lution (i.e., ≥300 m) are often composed of mixtures of different land
covers that differ in their socio-economic and ecological function
(Boschetti, Flasse, & Brivio, 2004; Pflugmacher et al., 2011). By compar-
ison, medium resolution (10 to 100 m sided pixels) observations pro-
vide a synoptic characterization of large areas at a level of detail
informative of, and upon, management, reporting, and decision making
(Wulder, White, et al., 2008). While these medium resolution observa-
tions are more sensitive to data availability issues and clouds, land sur-
face mapping over large areas (Masek et al., 2006, 2008; Townsend
et al., 2009) has become increasingly feasible for the broader user com-
munity with the development of standardized surface reflectance
datasets (Masek et al., 2006) and automated cloud masking algorithms
(Zhu &Woodcock, 2012). In recent years, these observations have been
integrated with high (pixels sided 1 to10 m) and very high (b1 m) spa-
tial resolution satellite data to enablemonitoring of urban development
(Ban, Hu, & Rangel, 2010), or integrated with light detection and rang-
ing (lidar) data to inform international forest monitoring needs such
as REDD (Reducing Emissions from Deforestation and Forest Degrada-
tion) (De Sy et al., 2012).

Arguably, the most common data utilized to map LCLUC are from
Landsat satellites (Cohen & Goward, 2004). The 30 m spatial resolution
of Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+),
and Operational Land Imager (OLI) data, combinedwith a spatial extent
of 185 x 185 km per scene have proven utility for monitoring land sur-
face parameters over time, offering insights at human scales (Wulder,
White, et al., 2008). With observations reaching back to 1972, the
Landsat program also provides the longest record of remotely sensed
data over land and is therefore well suited for mapping anthropogenic
changes of the terrestrial biosphere. While the success of Landsat for
global vegetation mapping is undisputed, scientific understanding of
landscape dynamics can be limited by the revisit cycle of the satellite
and the related acquisition plan (Wulder, Masek, Cohen, Loveland, &
wWoodcock, 2012).

Based upon the Landsat orbital characteristics and imaging swath
there is an opportunity to obtain an image for any given location
every 16 days with a single sensor. Due to the on-board recording and
downlink capacity of Landsat-8 (Roy et al., 2014) there is now anoppor-
tunity to collect about 725 scenes per day, representing most of the
Earth's terrestrial surface. This level of imaging is beyond the observa-
tion and sensor design specifications and is well above what has been
historically collected (Wulder & Coops, 2014), in somewaysmaking ac-
quisition planning obsolete. With the currently operating Landsat sen-
sors, there is a collection opportunity every 8 days, which has been
the case since the launch of Landsat-7 in 1999 (with both Landsat-5
and -7 operating concurrently, until the failure of Landsat-5 in early
2012). However, data acquisition characteristics combined with cloud
conditions often results in an effective lengthening between two clear
sky observations (Fig. 1).

There is a geographic dependency of image availability based
upon acquisition planning and the presence of persistent cloud
cover (Arvidson, Goward, Gasch, & Williams, 2006). For instance, at-
mospheric contamination is particularly important across tropical
and sub-tropical regions (Ramankutty, Foley, & Olejniczak, 2002),
where lack of clear pixels due to cloud cover make the use of optical
remotely sensed data difficult (Hilker et al., 2012, Fig. 1) even for
generating cloud reduced composites. Higher levels of cloud cover
also impact the ability to geolocate imagery, especially when the
use of GCPs is required. Phenology likewise impacts the availability
and suitability of imagery, with shorter growing seasons and the
frequent presence of unseasonal snow and ice at higher latitudes.
Somewhat compensating for the shorter growing season at higher
latitudes is the overlap of imaging paths, which results in more
views per unit area of Earth's surface with increasing latitude
(White & Wulder, 2013). Accordingly, the development and
updating of land cover and change maps using medium spatial reso-
lution data sets over large areas is primarily limited by the frequency
of temporal repeat visits, latitude, sensor- and period-specific acqui-
sition conditions, as well as atmospheric contamination including
cloud, shadow, haze, and smoke.

Once an image has been acquired, cloud and related shadow remains
the primary driver of image quality and usability. Fig. 1 illustrates an es-
timate of clear sky observations based on mean annual cloud fraction
derived from the MOD35 cloud mask (Ackerman et al., 1998; Frey
et al., 2008) and the total number of Landsat observations derived
from the degree of overlap in the WRS-2 path rows. The figure high-
lights the need for additional observations, particularly in the tropical
and boreal regions. Depending on the specific application, the actual
number of useful observations per year (Fig. 1A) is also limited consid-
erably by length of the growing season and availability of daylight in
higher latitudes. This is particularly relevant for the boreal regions of
Eurasia and North America (Fig. 1B), where the number of clear sky ob-
servation gets reduced to less than 5 across much of the region when
constrained by growing season. Note that for the purpose of this
study, growing season length was approximated as the number of
days with mean daily air temperature greater than 5 °C. Daily estimates
of air temperature were obtained from NOAA's Gridded Climate
Datasets, http://www.esrl.noaa.gov/psd/data/gridded/tables/daily.html
for 2013 at 2.5° spatial resolution.

3. Virtual constellations: definition and forms

The main objective of a LCLUC virtual constellation is to improve
the temporal revisit frequency of medium-resolution sensors (CEOS,
2006). Principally, this can be accomplished either by combining
medium-resolution observations from sensors of similar spatial,
spectral, temporal, and radiometric characteristics or alternately by
complementing the finer spatial resolution data with the higher
temporal revisit frequency of coarser spatial resolution sensors, in-
cluding MODIS (Gao, Masek, Schwaller, & Hall, 2006), AVHRR
(Lunetta, Lyon, Guindon, & Elvidge, 1998), and the upcoming
Sentinel-3. While virtual constellations can greatly benefit Earth sys-
tem science by providing new opportunities for observations with
high cost efficiency, there are trade-offs and limitations associated
with combining different sensors and platforms to accomplish
existing and new science goals. Spacecraft and sensors are typically
designed for specific scientific objectives and measurement require-
ments, and as a result, use of such data for purposes they have not
been designed for may lead to sub-optimal performance. Challenges
include orbital considerations, the signal-to-noise-ratio of combined
observations, and differences in the number, width, and placement
of spectral bands, among other issues (CEOS, 2006).

Virtual constellations are driven by the application need, andmay be
categorized by the level to which the different data sources used in this
constellation require processing before they can be combined in a con-
stellation approach.We suggest defining these processing requirements
in terms of “Application Readiness Levels” (ARL):

1. ARL-1 virtual constellations combine sensors whose data are in-
compatible because the measurements are based on different
principles (for instance constellations of passive and active sys-
tems). While data sources from such constellations cannot be eas-
ily combined on a per pixel basis, processed results or derived

http://www.esrl.noaa.gov/psd/data/gridded/tables/daily.html


Fig. 1. Approximate number of cloud-free Landsat observations per year (inset A), assuming the 2013mean annual cloud fraction as estimated fromMOD35 (Ackerman et al., 1998; Frey
et al., 2008) and theWRS-2 Path Rows with a 16-day revisit cycle (descending nodes only). Approximate number of cloud-free Landsat observations within the growing season (inset B).
The actual number of useful observations may be further limited by the length of the growing season and availability of daylight, particularly in higher latitudes. Growing season was ap-
proximated as number of days with mean daily air temperature N+5 °C.
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products from each data source can provide complementary infor-
mation that would not be possible with either sensor alone. ARL-1
virtual constellations have the potential to provide substantial
improvements to conventional data products, for instance through
the combination of two- and three-dimensional datasets (Hudak,
Lefsky, Cohen, & Berterretche, 2002).
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2. ARL-2 virtual constellations combine sensors that have either funda-
mentally different spectral or spatial characteristics but that share a
commonmeasurement principle, for instance passive optical remote
sensing. ARL-2 includes principally compatible sensors, but some
transformation of data values may be required. Importantly, the
resulting data product is still at the level of basic, pixel-level radiom-
etry, that is, reflectance values are matched. An example of process-
ing for an ARL-2 level is the blending of data from sensors with
complementary spatial, spectral, and temporal characteristics, such
as Landsat and NASA's MODIS (Gao et al., 2006).

3. ARL-3 virtual constellations combine sensors with similar spatial and
spectral characteristics. In the simplest case, data from sensors with
very similar characteristics may bematchedwith no or minimal pro-
cessing requirements. For example the cross-calibrated TM and
ETM+ sensors on board Landsat-5 and -7 (Chander, Markham, &
Helder, 2009) can be used interchangeably for certain applications
(e.g., Kennedy, Yang, & Cohen, 2010; Wulder, Masek, et al., 2012).
Minimal processing in this context implies minimal spectral align-
ment or spatial resampling of the otherwise compatible reflective
bands. Examples for ARL-3 type compatibilities also include sensors
from different platforms and space agencies that share important
characteristics in at least a portion of the spectral bands (e.g.
Sentinel-2, Landsat sensors, SPOT-4/5).

The degree to which sensors are compatible would determine the
approach by which data products are generated via virtual constella-
tions (Goward et al., 2012). Table 1 details the type of LCLUC informa-
tion products that would be associated with each of these ARLs. Fully
compatible sensors (ARL-3) can be merged at the radiometric level or
used interchangeably as inputs to algorithms, with only minor adjust-
ments required for differences in bandpass or bidirectional reflectance
distribution function (BRDF). In contrast, data from sensors with differ-
ent measurement modalities (ARL-1) may be combined to retrieve bio-
physical variables, but will be merged relatively late in the processing
chain. For example, optical reflectance and radar backscatter can be
used synergistically with lidar to map forest biomass (Montesano
et al., 2013). Note that the compatibility between historic systems and
archival data is also considered as an important component of the
various ARLs. For the following sub-sections, we reverse the order of
presentation for the various ARL, organized to begin with the simplest
case (ARL-3).

3.1. Sensors that have similar spectral and spatial characteristics (ARL-3)

Combinations of similar sensors allow improvement of revisit fre-
quencies at no or minimal loss of spatial and spectral detail; however,
the resulting increase in temporal resolution is moderate. Arguably,
themost commonly applied virtual constellation is that of different sen-
sors from the Landsat series of satellites, particularly TM (Landsat-4 and
-5) and ETM+(Landsat-7) data (Teillet et al., 2001). The ETM+andOLI
sensors offer several enhancements over TM sensors, including reduced
signal-to-noise (SNR), improved geodetic accuracy, and reliable calibra-
tion (Masek, Honzak, Goward, Liu, & Pak, 2001); however, the failure of
the Scan-Line Corrector of ETM+ in 2003, has somewhat limited the
use of ETM+ for land-covermapping and change detection applications
Table 1
Examples of LCLUC information needs addressed by virtual constellations with different
“Application Readiness Levels” (ARLs).

LCLUC domain Virtual constellation

Land cover type I (e.g. forest, cropland, etc.) ARL-3
Land cover type II (e.g. forest type, crop type) ARL-3/ARL-2
Annual land cover change monitoring ARL-3/ARL-2
Near-real time change indicators (fire, deforestation) ARL-2
Forest degradation/land-use intensification ARL-1
Carbon monitoring (e.g. REDD+) ARL-1
(Wulder, Ortlepp,White, &Maxwell, 2008). Nonetheless, the continuity
of spatial and spectral characteristics between the TM, ETM+, andmost
recently OLI (Roy et al., 2014) sensors allows for a near-seamless inte-
gration of these different data types for LCLUC purposes (Chander,
Markham et al., 2009; Muñoz‐Villers & López‐Blanco, 2008).

Several countries have placed satellites in orbit that are in principle
compatible with Landsat sensors (Goward et al., 2012), including the
French Satellite Pour l'Observation de la Terre (SPOT), the Indian Re-
mote Sensing (IRS) satellite, and the JapaneseAdvanced LandObserving
Satellite (ALOS) (Goward, Williams, Arvidson, Irons, & Irish, 2009).
However, as reviewed by Powell et al. (2007), apart from Landsat,
very few Earth-observation systems independently meet the require-
ments that are essential for mapping LCLUC (Singh, 1989), specifically:
a systematic acquisition strategy (Arvidson et al., 2006), consistent
and calibrated radiometric quality (Markham & Helder, 2012), and
long-term global archives (Goward et al., 2006; Wulder, Masek, et al.,
2012). Systems that do meet these criteria include the IRS ResourceSat
AdvancedWide Field Sensor (AWiFS), the China–Brazil Earth Resources
Satellite (CBERS) (Goward et al., 2012) (Table 2). The spatial resolution
of AWiFS is only about half that of Landsat (56 m at nadir); however,
this disadvantage is compensated for by a nominal swath width of
730 km (four times that of Landsat), allowing for a 5-day revisit cycle
(Fig. 2A). The IRS sensors have a demonstrated potential to support
large-area remote sensing applications with accuracies comparable to
Landsat (Powell et al., 2007), however, akin to SPOT, AWiFS lacks spec-
tral coverage in the blue, and thermal infrared (TIR) regions (Powell
et al., 2007; Table 2)which limits the ability to consolidatemultispectral
reflectancemeasurements (Cohen et al., 2002; Healey, Cohen, Zhiqiang,
& Krankina, 2005) and reduces the options for change detection algo-
rithms that can be applied (Coppin, Jonckheere, Nackaerts, Muys, &
Lambin, 2004; Hansen & Loveland, 2012). In addition, considerable dif-
ferences exist in the configuration and functioning of Landsat and
AWiFS, particularly the spectral sensor configuration (radiometry of
10-bit AWiFS versus 8-bit Landsat) and sampling footprint (Goward
et al., 2012). Arguably the most challenging limitation for using AWiFS
data in a virtual constellation is data availability. In contrast to Landsat
data (Wulder, Masek, et al., 2012), AWiFS data, like SPOT data, are nei-
ther free nor readily accessible at the present time. Basic access to
data is a fundamental requirement for data to be incorporated into
LCLUC monitoring programs (Goward et al., 2012; Hansen & Loveland,
2012), with the nature of access being a key consideration for a data-
driven virtual constellation strategy. Despite these challenges, AWiFS
(previously) and DMC (more recently) have been used as key imagery
inputs, along with Landsat data, in the NASS Cropland Data Layer
(CDL) crop type maps (e.g., Hansen & Loveland, 2012). Proposed to
start in 2015, Satellite Pour l'Observation de la Terre (SPOT) 1–5 imag-
ery more than 5 years old is to be made freely available for non-
commercial use through the SPOT World Heritage Program (https://
theia.cnes.fr/rocket/#/search?collection=SpotWorldHeritage). The
SPOT family of satellites has acquired nearly 30 million images world-
wide since 1986. The free access to these SPOT data will be beneficial
for retrospective LCLUC analyses.

INPE (Instituto Nacional de Pesquisas Espaciais, Brazil) has provided
CBERS data free of charge to end users in South America and China since
2004 (Fonesca et al., 2014) and in 2007, this policywas extended to end
users in African countries. Since 2004, CBERS data have been freely
available to end users elsewhere on the globe as well, but only via the
internet. Initially CBERS observations were acquired over Brazil and
China exclusively. Later agreements allowed for receiving stations out-
side of Brazil and China. While ad hoc in nature, the capacity to extend
downlinks to other ground stations has been demonstrated. The num-
ber and distribution of ground stations still does not enable systematic,
globally distributed coverage of CBERS data, so in a virtual constellation
context, the integration of CBERS observations would be spatially
constrained. CBERS is in a sun-synchronous orbit at an altitude of
778 km, resulting in a 24-day revisit time and a swath width of

https://theia.cnes.fr/rocket/#/search?collection=SpotWorldHeritage
https://theia.cnes.fr/rocket/#/search?collection=SpotWorldHeritage


Table 2
Spectral and spatial characteristics of the main LCLUC ARL-3 virtual constellation candidate instruments.

Attribute Landsat TM, ETM+ Landsat OLI Sentinel-2 CBERS-2 (CCD) AWiFS

Spectral bands
(μm)

Resolution
(m)

Spectral bands
(μm)

Resolution
(m)

Spectral bands
(μm)

Resolution
(m)

Spectral bands
(μm)

Resolution
(m)

Spectral bands
(μm)

Resolution
(m)

Visible 0.45–0.52 30 0.45–0.51 30 0.43–0.45 60 0.45–0.52 20
0.52–0.60 30 0.53–0.59 30 0.55–0.58 10 0.52–0.59 20 0.52–0.59 56
0.63–0.69 30 0.64–0.67 30 0.64–0.67 10 0.63–0.69 20 0.62–0.68 56

NIR 0.76–0.90 30 0.70–0.71 20 0.77–0.89 20 0.77–0.86 56
0.73–0.75 20
0.77–0.79 20
0.78–0.90 10

0.85–0.88 30 0.86–0.88 20
0.93–0.95 60

SWIR 1.37–1.40 60
1.55–.175 30 1.57–1.65 30 1.57–1.65 20 1.55–1.75 80 1.55–1.70 56
2.08–2.35 30 2.11–2.29 30 2.10–2.28 20

Architecture Cross-track scanner Pushbroom Pushbroom Pushbroom Pushbroom
Swath width 185 km 185 km 290 km 113 km 737 km
Revisit 16 days 16 days 10 days 26 days 5 days
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113 km. The sensors on board CBERS-2 and CBERS-2B, launched in 2003
and 2007, respectively, have higher spatial resolution (20 m, Table 2)
than Landsat in the visible and near-infrared bands (Powell et al.,
2007). With rapid development and short launch intervals, there are a
number of CBERS sensors with some variability to observation charac-
teristics. This variability in observation characteristics can impact
CBERS' utility for change detection and image classification methods
(Coppin et al., 2004) as well as agricultural water use (via transpiration
modeling), as well as cloud screening (Roy et al., 2014). More recently,
CBERS-4,which has similar characteristics to CBERS-2,with the addition
of SWIR and TIR bands, was launched (Dec 2014; http://database.
eohandbook.com/database/missionsummary.aspx?missionID=393).
Fig. 2 demonstrates the extent to which virtual constellations of both
AWiFS and CBERS will increase the number of cloud-free observations
in tropical regions considerably, thereby providing new opportunities
for mapping seasonal changes in vegetation cover and aseasonal degra-
dation of forest canopies across the Amazon region. Ongoing research
and development with new CBERS-4 measures will offer additional in-
sight into opportunities for sensor integration.

Significant improvements in LCLUC mapping are expected from the
Sentinel-2 mission of the European Commission's Copernicus Program,
Fig. 2. Approximate number of cloud-free observations acquired per year over Brazil from
which will acquire medium-resolution optical images globally, provid-
ing enhanced continuity of SPOT- and Landsat-type data. The Sentinel-
2 mission aims at providing an operational multi-spectral Earth-
observation system that complements the Landsat and SPOT observa-
tions toward improved data availability for users (Drusch et al., 2012).
The Sentinel-2 mission is based on a twin satellite configuration (Senti-
nel-2A and 2B) that will be deployed in a polar sun-synchronous orbit
with 14.3 cycles per day, and a reference altitude of approximately
786 km (Gatti & Bertolini, 2013). Launched approximately 12 months
apart, the satellites will carry a payload with visible, near infrared
(NIR), and SWIR sensors (13 spectral bands) with a spatial resolution
between 10 and 60 m (Table 2). One of the strengths of the Sentinel-2
mission is the relatively large swath, allowing a 2–3 day revisit time at
mid-latitudes, and five days at the equator for two satellites. The
European Space Agency (ESA) announced in November 2013 free and
open access to all Sentinel satellite data during the operational phase
of the satellite missions (ESA [European Space Agency], 2013). This pol-
icy change is formally the responsibility of the European Commission,
with an open data policy established for the Copernicus Program
(http://www.copernicus.eu/sites/default/files/library/Regulation_377_
2014_Copernicus_3April2014.pdf). Sentinel-2 data products (Level 1C)
a virtual constellation of (A) Landsat and AWIFS and (B) Landsat, AWIFS, and CBERS.

http://database.eohandbook.com/database/missionsummary.aspx?missionID=393
http://database.eohandbook.com/database/missionsummary.aspx?missionID=393
http://www.copernicus.eu/sites/default/files/library/Regulation_377_2014_Copernicus_3April2014.pdf
http://www.copernicus.eu/sites/default/files/library/Regulation_377_2014_Copernicus_3April2014.pdf
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will be delivered as ortho-rectified top-of-atmosphere reflectance
datasets in UTM-UPS/WGS84 projection and tiled into 100 km x
100 km segments following the US-MGRS (US-Military Grid Reference
System) grid approach. Surface reflectance products will be available
via a user-operated processing toolkit. Surface reflectance products
Fig. 3.Approximate number of cloud-free observations to be expected from a virtual constellatio
the growing season (B).
will be available on a 5-day basis to the end-user. An ARL-3 virtual con-
stellation of Landsat with Sentinel-2 would increase the number of
available observations considerably (Fig. 3A–B) while providing a simi-
lar level of radiometric quality and spectral coverage. Such data will be
particularly beneficial for phenological studies and the number of
n of Landsat and both Sentinel-2 instruments (descending nodes only) for the year (A) and
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observations available during the growing season in higher latitudes
(Fig. 3B). Once collected it is intended that the data is to be available
as a rolling archive for a period of up to four months (https://sentinel.
esa.int/documents/247904/349490/S2_SP-1322_2.pdf), with intentions
to place the data off-line and less available to users. Discussions are on-
going internationally to enable mirroring of the data and facilitating
greater availability. Collecting and downlinking of over 800 gigabytes
per day is a highly complex technical and logistical activity. The addi-
tional storage and dissemination load that results from the large num-
ber of channels over fine spatial resolutions with a high radiometric-
bit depth cannot be underestimated.

The ability to detect changes in land cover depends not only on the
number of available clear sky observations but also the measurement
noise inherent to the system. In addition, when retrospective analyses
of historic changes are desired, modern sensors need to be combined
with older sensor data that often have broader and fewer spectral
bands (Hostert, Roder, & Hill, 2003; Pflugmacher, Cohen, & Kennedy,
2012) as well as with different radiometric resolution (e.g., evolving
from 6 to 8 to 12 bits over time). While the number of clear sky obser-
vations from ARL-3 virtual constellations can be approximated
(Figs. 1–3), noise levels of virtual constellations are much harder to de-
termine. Accuracies of virtual constellation surface reflectance depend
on: the signal-to-noise ratio and calibration accuracy of each compo-
nent sensor and related error propagation; each sensor's spatial resolu-
tion and geolocation accuracy; the accuracy of estimating atmospheric
and bi-directional reflectance effects; spatial, spectral, temporal, and ra-
diometric mismatches in the combination of satellite systems. As a re-
sult, performance may vary in space and time; however, despite these
dependencies, ARL-3 virtual constellations are likely to increase the
ability for mapping changes in surface parameters significantly, as the
total number of available cloud-free observations—and not measure-
ment noise—is typically the most limiting factor for the accuracy of
vegetation parameters (Hilker et al., 2012). Statistical significance of
changes in surface properties may be assessed using approaches that
consider the unequal numbers of observation and variances
(Satterthwaite, 1946; Welch, 1947). Recent work by Whitcraft,
Vermote, Becker-Reshef, and Justice (2014) and Whitcraft, Becker-
Reshef, and Justice (2015) has an agricultural focus, describing themea-
surement context and needs for this domain. A follow-up evaluation
characterizes the independent and combined revisit capacity for sub-
100 m spatial resolution optical satellites (Whitcraft, Becker-Reshef,
Killough, & Justice, 2015). The authors find that no currently operating
system is able to provide themeasurement frequency required to result
in cloud-free data within an eight-day period. Multi-agency, multi-
mission, hypothetical constellations are simulated to generate, for com-
parative purposes, the likelihood of an 8-day cloud free measurement.
While gaps remain, Whitcraft, Becker-Reshef, Killough, et al. (2015)
demonstrate that constellations can improve the likelihood of meeting
required measurement targets when compared to the single-satellite
scenario. Ultimately, in the context of LCLUC, increasing the likelihood
and frequency of cloud-free observations within an 8-day target win-
dow would arguably be the greatest advantage and promise afforded
by ARL-3 virtual constellations.

3.2. Sensors that have different characteristics but a commonmeasurement
principle (ARL-2)

In situationswhere greater temporal density of measurements is re-
quired, data needs of LCLUCmay bemet by virtual constellations of sen-
sors with differing but complementary spatial and temporal
characteristics. These ARL-2 virtual constellations require a model-
based application to allow matching of pixel information and blending
of coarse and medium spatial resolution data (e.g., Gao et al., 2006).
Such methods allow for an increase in temporal resolution, noting that
therewill be a reduction of pixel level variance (as thefine temporal res-
olution is informed by the lower spatial resolution data source).
Regarding the detection of change, some of the limitations associated
with the blending procedure may be mitigated by preparing a change
mask from a finer spatial resolution image pair that represents a season
which in turn can be assigned to a within-season change date using the
more coarse spatial resolution data (Hilker, Wulder, Coops, Seitz et al.,
2009). To this end, Schmidt, Lucas, Bunting, Verbesselt, and Armston
(2015) used a priori knowledge (derived from a Landsat-based informa-
tion product) of clearing events to constrain their temporal analyses. In
their study, the authors used the Spatial and Temporal Adaptive Reflec-
tance FusionModel (STARFM; Gao et al., 2006) to build a blended dense
time series (8-day interval) dataset for a 12-year period (2000–2011).
The authors used this data to construct an NDVI time series and with
that detected stand-replacing disturbance events with an accuracy of
94%. Events were accurately dated to within 40 days of their actual dis-
turbance date.

Among the most relevant coarse resolution (N250 m) sensors
(Table 3) for the purposes of applications concerning terrestrial vegeta-
tion are the AVHRR (Lunetta et al., 1998) and MODIS (Townshend &
Justice, 2002) sensors. The AVHRR sensor has been in orbit since 1978
(Fontana et al., 2012) and provides daily observations at a spatial reso-
lution of 1 kmwith 4 to 6 spectral bands depending on the sensor type
(James & Kalluri, 1994).While AVHRR provides a long heritage of freely
available surface reflectance observations (Loveland et al., 2000), the
sensor is limited by its spectral characteristics, calibration, and (for glob-
al products) uneven geographic sampling, which essentially limits long-
term land cover classifications to analysis of red and NIR reflectance
(Loveland et al., 2000; Young & Wang, 2001). Note that Table 3 is
intended to be representative of candidate instruments and is not
intended as an exhaustive list of satellites and specifications. For obser-
vational context and an exhaustive list of satellite and specifications, see
Belward and Skøien (2015) and related supplemental data.

MODIS provides 36 spectral bands, 7 of which are commonly used
for terrestrial applications (Vermote, Kotchenova, & Ray, 2011). De-
pending on the spectral channel of interest, MODIS has spatial resolu-
tions of 250 m, 500 m, and 1 km at nadir, with near daily global
coverage since 2000. Data from both MODIS sensors have been exten-
sively used for coarse resolution LCLUC at regional and global scales
(Friedl et al., 2010) and to complement finer spatial resolution Landsat
observations. Acerbi-Junior, Clevers, and Schaepman (2006) usedwave-
let analysis to combine Landsat observationswith 500m resolution data
from the MODIS to classify land cover types in the Brazilian savanna.
Muchoney et al. (2008) used regression trees to fuse Landsat and
MODIS data based on the 500-m 16-day MODIS BRDF/Albedo land sur-
face characterization product tomonitor forest cover in theCongo Basin.

Most image-based data-fusion algorithms do not generate calibrated
outputs of spectral radiance or reflectance. However, STARFM and the
more recent Spatial and Temporal Reflectance Unmixing Model
(STRUM) (Gevaert & Garcia-Haro, 2015) are examples of ARL-2 algo-
rithms that yield modeled surface reflectance at a 30 m spatial resolu-
tion, through the blending of MODIS and Landsat surface reflectance
data. Based on STARFM, Hilker, Wulder, Coops, Linke, et al. (2009) de-
veloped a change detection model that allows disturbance detection at
the temporal resolution of MODIS but with the spatial detail that more
closely resembles Landsat. The algorithm was used to accurately (93%)
map disturbances N 1800 m2 (or 2 Landsat pixels) across a large area
of west-central Alberta, Canada (Gaulton, Hilker, Wulder, Coops, &
Stenhouse, 2011).

Other potential sensors for consideration in an ARL-2 constellation
include ESA's MERIS (MEdium Resolution Imaging Spectrometer) in-
strument (Curran & Steele, 2005) as well as NASA's SeaWiFS sensor
(Tucker et al., 2005).MERISwas launched aboard ENVISAT inNovember
2001 and collected data until its unexpected loss in early 2012. SeaWiFS
was operational between 1997 and 2010. Both the MERIS and SeaWiFS
sensors were originally designed for ocean color applications and, as a
result, do not include SWIR or TIR bands, thus the capacity of these
sensor's to discriminate among certain land cover classes (particularly

https://sentinel.esa.int/documents/247904/349490/S2_SP-1322_2.pdf
https://sentinel.esa.int/documents/247904/349490/S2_SP-1322_2.pdf
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different forest types) is therefore limited (Zurita-Milla, Clevers, Van
Gijsel, & Schaepman, 2011). Launched in 2011, the Visible Infrared Im-
aging Radiometer Suite (VIIRS) is a sensor on board the Suomi National
Polar-Orbiting Partnership, designed to advance capabilities of AVHRR
and provide continuity with MODIS (Table 3; Justice et al., 2013). Oper-
ational data products (Environmental Data Records or EDRs) have been
generated by NASA and NOAA and include surface reflectance and veg-
etation indices. Currently these VIIRS products are undergoing a refine-
ment and validation phase (e.g., Vermote, Justice, & Csiszar, 2014). The
upcoming Copernicus Sentinel-3 mission (projected to be launched in
late 2015; http://spaceflightnow.com/launch-schedule/) will provide
another opportunity for forming ARL-2 virtual constellations with me-
dium and coarse-resolution sensors. Significantly, Sentinel-3 will be
the only coarse-resolution optical platform with a morning viewing
time, thus providing some degree of continuity with systems such as
the Terra MODIS sensor. As in the case of ARL-3 constellations, ARL-2
constellations can improve the likelihood of cloud-free observations,
which is a key limiting factor for LCLUC applications. As an active area
of research, the fusion of data from these aforementioned sensors has
an increasingly strong scientific foundation that can inform the future
development of ARL-2 constellations.

3.3. Sensors that have disparate characteristics, but offer complementary
measures or information products (ARL-1)

Finally, new opportunities for Earth system science also emerge
from combining observations from “incompatible sensors” (sensors
with different measurement modalities). To date, spaceborne active re-
mote sensing systems are predominantly synthetic aperture radar
(SAR) sensors, with no current spaceborne lidar systems in orbit. Inter-
ferometric SAR, lidar, and to some extent SAR backscatter systems, pro-
vide complementary information on three-dimensional vegetation
structure, such as biomass (Kaasalainen et al., 2015). ARL-1 virtual con-
stellations represent the most challenging type of virtual constellation
to implement.

Observations from an ARL-1 virtual constellationmay be used to en-
hance land cover characterizations. For example, SAR backscatter data
has been combined with optical imagery to reduce classification error
rates, when compared to error rates of single-source classifications
(Haack & Slonecker, 1994; Solberg, Jain, & Taxt, 1994). The most com-
mon radar wavelengths suitable for vegetation mapping are X-band
(3.1 or 3.5 cm wavelength), C-band (5.65 cm), S-band (12 cm), L-
band (24 cm) and P-band (30–60 cm) (Balzter, 2001). Several radar sys-
tems are available and may be potential candidates for ARL-1 virtual
constellations (Mitchell et al., 2014) including instruments by
European, Japanese, Canadian, and American Space Agencies; addition-
ally, Belward and Skøien (2015) note the presence of SAR instruments
launched by Russia with access and applications utility remaining to
be determined. The Advanced Synthetic Aperture Radar (ASAR) instru-
ment flew aboard ESA's ENVISAT until the satellite's loss in early 2012
and extended themission of the previous ActiveMicrowave Instrument
(AMI) SAR instruments flown on the ERS-1 and ERS-2 satellites. ASAR
provided C-band observations between 30 m and 1000 m ground reso-
lution. Similarly, the Canadian RADARSAT-1 and -2 satellites are ad-
vanced Earth observation systems equipped with a C-band SAR and
launched in 1995 and 2007, respectively. A big advantage of C-band
SAR lies in its historic and future data continuity: Envisat ASAR, ERS,
and Radarsat have acquired compatible C-band data for more than 20
years, and the Copernicus Sentinel-1 (launched 2014) will ensure data
continuity into the near future. Backscatter from C-band SARmostly re-
sults from interactions with tree canopy leaves, needles, and small sec-
ondary branches, whereas C-band backscatter from tree trunks is small
due to minimal canopy penetration (Kasischke, Melack, & Dobson,
1997). Thus, C-band backscatter is less sensitive to forest structure
when compared to the longer wavelengths of L-band and P-band
instruments.

http://spaceflightnow.com/launch-schedule/
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PALSAR (Phased Array type L-band Synthetic Aperture Radar) pro-
vides L-band frequency observation at 10 and 100 m spatial resolution
and a swath width of 250 to 350 km (Rosenqvist et al., 2014). The first
instrument system flew aboard the Advanced Land Observing Satellite
(ALOS) satellite and provided data between 2006 and 2011. A second
instrument with improved spatial resolution and revisit time was
launched in 2014 aboard ALOS-2. The Shuttle Radar Topography Mis-
sion (SRTM) obtained interferometric synthetic aperture radar
(InSAR) data onboard the Space Shuttle Endeavour during an 11-day
mission in February of 2000 (Fatoyinbo & Simard, 2013).

While beyond the scope of this communication, it is worth noting
that SAR data (C-, L-, and X-band) are also interoperable in the data do-
main, with some level of interoperability possible. The similarity of
measures between SAR instruments allows for increased interoperabil-
ity capacity over mixing measures of differing wavelengths. Moreover,
research into synergies between SAR and lidar data is increasingly com-
mon (Nelson et al., 2007), particularly for forest biomass estimation
(Hyde, Nelson, Kimes, & Levine, 2007; Sun et al., 2011; Tsui, Coops,
Wulder, Marshall, &McCardle, 2012; Kaasalainen et al., 2015). Likewise,
there is increasing interest in the integration of optical and SAR data
(Byun, Choi, & Han, 2013) and information products (Hyde et al.,
2006). An example application of an ARL-1 virtual constellation for for-
est monitoring is provided by Lehmann et al. (2015), who present an
approach for integrating forest presence/absence masks derived from
Landsat and ALOS-PALSAR data. While there may be good agreement
for single-date characterizations of forest presence/absence from SAR
and optical data, there are significant differences in the characterization
of forest change (such as focused on deforestation and afforestation)
that may compromise the full interoperability of these data sources in
the context of carbon accounting (Lehmann et al., 2015).

Finally upcoming satellite missions will continue to advance radar
capabilities. In 2020, ESA is planning to launch a P-band SAR satellite
in 2020 dedicated to measuring forest biomass for the assessment of
terrestrial carbon stores and fluxes (Le Toan et al., 2011). BIOMASS
will feature a P-band sensor that will provide P-band backscatter and
polarimetric InSAR (Pol-InSAR) data to measure forest biomass and its
change between 70° N to 56° S at a spatial scale of 100–200 m over its
5-year mission lifetime. The US and India are collaborating on the
NASA-ISRO Synthetic Aperture Radar (NISAR), a dual S- and L-band sen-
sor to be launched around 2020.

Challenges for ARL-1 virtual constellations incorporating radar and
optical data include issues with data continuity and availability, which
often may require combinations of multiple sources for each compo-
nent of the virtual constellation (i.e., multiple sensors providing optical
and radarmeasures). Nonetheless, the combination of optical and radar
datamay provide new opportunities for mapping of land cover changes
(Laurin et al., 2012) as well as estimation of canopy biophysics and en-
ergy input, particularly in tropical regions with persistent cloud cover
throughout the year (Treuhaft, Law, & Asner, 2004). Combining optical
and SAR data can help with reducing data gaps in optical systems
(Reiche, Verbesselt, Hoekman, & Herold, 2015) and improve land sur-
face characterizations if both instrument data are available for a specific
observation period. For instance, Solberg et al. (1994) combined Landsat
TM images with SAR and optical sensor data and demonstrated distinct
improvements in land cover classification accuracies compared to opti-
cal sensors alone. As such ARL-1 virtual constellations may also enable
results that would not be possible using either sensor's data exclusively.
Similarly, Kaheil and Creed (2009) combined ERS-2 SAR, Landsat TM,
and airborne lidar data to classify dry and wet vegetation types using
support vector machines and discrete wavelet transformations.

The need to use radar data to mitigate cloud cover in optical data is
reduced given sufficient additional ARL-1 measurements (e.g.,
Whitcraft et al., 2014). Modern systems have greater on-board storage
and downlink capacity, such as demonstrated by the increased daily ac-
quisition of Landsat-8 (Roy et al., 2014), enabling a greater data yield on
a per satellite basis. Landsat-8 is operating near an “always-on” mode
for terrestrial ecosystems, with well over 700 images collected per day
(Wulder & Coops, 2014). Radar and optical data are not interoperable,
that is one cannot be used in place of the other, as the data are represen-
tative of different surface conditions due to thewavelengths sensed and
the mode (active versus passive) utilized.

With regards to the use of radar in large area LUCUC applications,
challenges remain due to the impacts of both physical conditions such
as topography and moisture, and technical elements related to the
high level of training and expertise required to utilize these data. Topog-
raphy iswell known to impact radar backscatter but can be corrected for
to some degree (e.g. Atwood, Andersen, Matthiss, & Holecz, 2014); less
predictable is the impact of environmental conditions upon the nature
of the returned microwave signal. Yatabe and Leckie (1995) report
that due to environmental conditions, such as recent rainfall, harvested
areas cannot be consistently detected using C-band SAR, with rugged
terrain also impacting detection. The authors also found that improved
outcomes are found using different microwave wavelengths, although
environmental conditions continued to have an effect. The use of
multi-date imagery or interferometry is suggested to improve detection
outcomes by Smith and Askne (2001) who also note that data choice
trade-offs include the likelihood of getting cloud free optical data and
the greater cost and complexity of using multi-temporal SAR data.

Spaceborne lidar systems specifically designed for vegetation mea-
surements have not yet been implemented. However, a potential candi-
date for virtual constellations is the spaceborne lidar data is the
Geoscience Laser Altimeter System (GLAS) on board the Ice, Cloud,
and land Elevation Satellite (ICESat) (Harding, 2005). GLAS's primary
objective was to measure ice sheet mass balance, but GLAS data are, to
some extent, also useful for studying vegetation structure (Duncanson,
Niemann, & Wulder, 2010; Fatoyinbo & Simard, 2013; Harding, 2005;
Lefsky et al., 2005; Popescu, Zhao, Neuenschwander, & Lin, 2011).
GLAS provides lidar data at a footprint of about 64 m, with spots sepa-
rated by nearly 170 m along the spacecraft's ground track (Abshire
et al., 2005). Lefsky (2010) and Simard, Pinto, Fisher, and Baccini
(2011) developed global forest height maps based on the fusion of
GLAS data with MODIS satellite imagery. Lefsky (2010) developed
least squares regression models to estimate Lorey's height for each
GLAS waveform using the waveform extent and the height of the 10th
and 90th percentile of waveform energy. Simard et al. (2011) utilized
the measure of the distance between the signal beginning and the
ground peak for each GLAS waveform. Lefsky (2010) and Simard et al.
(2011) then extrapolated these height estimates to produce wall-to-
wall canopy height maps. Lefsky (2010) used image segmentation to
derive forest “patches” frommonthly composites of 500mMODIS spec-
tral data. Forest patches ranged from 1–900 pixels with an average of
100 pixels (25 km2). Simard et al. (2011) used a regression treemethod
to extrapolate GLAS values globally based on a range of climate and
MODIS products. The CHMs resulting from these two studies were sub-
sequently compared and evaluated using small-footprint airborne laser
scanning data by Bolton, Coops, and Wulder (2013).

The Global EcosystemDynamics Investigation Lidar (GEDI) is sched-
uled for deployment on the International Space Station (ISS) in 2019
(http://science.nasa.gov/missions/gedi/). GEDI will collect lidar wave-
form observations over 14 parallel tracks at a 25 m footprint size. The
GEDI measurements will provide systematic measurements of vegeta-
tion canopy top heights and the vertical distribution of canopy elements
to address science questions related to forest carbon and carbon change.
These data will provide a robust sample of global forest biomass with
sufficient resolution to avoid terrain-induced bias. It is worth noting
that these measures will be limited to the extent of the orbit of the
ISS, which extends to approximately 50-degrees north and south lati-
tude, thereby excluding much of the northern boreal forest. Airborne
lidar has been demonstrated as a valuable information source and sur-
rogate for field plot data (Wulder, White, et al., 2012), which can be
used to calibrate and validate spatial models driven by remotely sensed
data (e.g., Mora et al., 2013). It is envisioned that spaceborne lidar

http://science.nasa.gov/missions/gedi/
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measures can be used in a similar fashion (e.g., Margolis et al., 2015) to
provide estimates of attributes such as height and biomass and to pro-
duction of wall-to-wall maps useful for management, reporting, or
modeling purposes.

4. Discussion

In the preceding sections we have outlined and demonstrated that
there is great scientific potential associated with the use of virtual con-
stellations tomap and characterize LCLUC atmedium spatial resolutions
(~30 m). Virtual constellations—as defined by CEOS—are about coordi-
nated capabilities for both space and ground segments, implying a po-
tentially complex path to success that may be encumbered by
institutional inertia, bureaucracy, and a lack of political will. Clearly, vir-
tual constellations are much more than the fusion of complementary
observations or information products. First and foremost, virtual con-
stellations are opportunities to deploy and coordinate the use of
Earth-observing sensors in a way that increases observation frequency
and data accessibility while reducing unnecessary redundancy and
costs, and that ultimately increases the use and application of these
data to address user information needs and advance Earth system sci-
ence. Indeed the increased use of these data in an operational context
is one of the keys to ensuring long-term continuity of these Earth-
observing systems (National Research Council, 2013). While the poten-
tial of virtual constellations to increase observation capacity is compel-
ling (Figs. 1 and 3), when considered specifically from a cost-benefit
perspective, most existing constellation opportunities are currently
underutilized (Goward et al., 2012). Major limitations exist in terms of
data compatibility and availability both of which are difficult to over-
come (Kajii, 2010). Of the 350 active missions currently supported by
CEOS, 245 (70%) have some form of open data policy (http://www.
ceos-datapolicy.org/). Recent adaptation of open data policies by both
the European Commission as well as the Japanese space agency
(JAXA) are crucial steps formore common acceptance of the virtual con-
stellation concept and for the more widespread use of satellite data in
the future (ESA, 2013). As presented in Wulder, Masek, et al. (2012),
free data is only part of the equation, with ease of access and portability
of imagery into applications similar of importance. Free data that is dif-
ficult to access, such as via an awkward data delivery portal or the lack
of web-based access entirely, limits data product utility and uptake by
users. Ground systems that prepare imagery to an analysis ready level
further promote user uptake by reducing pre-processing requirements
while also ensuring a common initial level of data quality.

The increasing number of space agencies and satellite operators
poses new challenges and opportunities to CEOS and the Earth-system
science community as virtual constellations require not only coordina-
tion, but also the definition and adoption of minimum standards and
rules that satellite operatorswill adhere to. At the same time, an increas-
ing number of sensors will expand the possibilities for virtual constella-
tion usage. However, timing of mission launches and coverage will
likely remain problematic in the near future, as there is no easy way
to reconcile mission-specific objectives with requirements to adhere
to minimum CEOS standards (CEOS, 2006). Such standards can provide
extremely useful, albeit non-binding guidance as to how to achieve and
maintain compatibility with existing satellite systems.

As compatibility between similar sensors is most easily accom-
plished, an ARL-3 virtual constellation has the greatest likelihood of
implementation in the near future. Indeed, this is the virtual constella-
tion model that is being most actively pursued by CEOS, which has
established a working group on a Land Surface Imaging virtual constel-
lation (Goward et al., 2012). Numerous examples exist in the literature
that demonstrate the potential for the combined use of sensors with
similar characteristics (e.g. Geneletti & Gorte, 2003; Zhou, Civco, &
Silander, 1998), but there is currently no coordinated effort across agen-
cies that allows for the routine production of global datasets for virtual
constellation sources. This may improve with the European Sentinel-2
mission (Malenovský et al., 2012), which has been designed with com-
patibility to Landsat in mind (Wulder, Masek, et al., 2012).

Recent trends point toward the possibility of innovative approaches
for ARL-3 constellations. The commercial remote sensing industry has
expanded dramatically in the last few years, with a major push toward
constellations of smaller satellites (b200 kg). These systems do not
necessarily prioritize radiometric quality and calibration to the degree
of the “heritage” Landsat-type systems, but these sensors may be
effectively incorporated into a virtual constellation using vicarious cali-
bration techniques (Kamel et al., 2012; Chander, Saunier, Choate, &
Scaramuzza, 2009). In this context, having at least one well-calibrated
system on orbit supports this type of disaggregated architecture. In ad-
dition, incorporation of commercial imagery into virtual constellations
faces issues associated with licensing agreements and cost.

Unlike ARL-3 constellations, ARL-2 constellations are not limited by
data availability, as both MODIS and AVHRR data archives are freely
available with both sensors providing daily observations. Due to the
data volume generated, applications that seek to combine these types
of data have thus far have been limited to local and regional studies
(Hilker, Wulder, Coops, Seitz, et al., 2009; Schmidt et al., 2015). None-
theless, the increase in the number of data fusion models over the
past several years (Gao et al., 2006; Hilker, Wulder, Coops, Linke, et al.,
2009; Gevaert & Garcia-Haro, 2015) demonstrates the interest in
these types of observations for mapping vegetation parameters and im-
proving Earth system modeling.

Arguably the largest range of possibilities—and challenges—are asso-
ciated with ARL-1 virtual constellations. These types of constellations
may not be easily implemented if complex analyses are required,
which indicate a need for highly qualified technical staff with rare skill
sets, to derive compatible data products. Their use will therefore likely
be limited to specific topic areas or applications. One promising field is
the combination of lidar and passive optical systems for mapping global
biophysical processes and vegetation growth (Duncanson et al., 2010).
The potential of such virtual constellations has been demonstrated in
a research context, but significant efforts will still be required to achieve
the level of acceptance needed to fully leverage the possible benefits
from coordinated use of satellites within and between agencies.

There are several cautions and considerations that must precede the
making of any forward-going recommendations, as it must be noted
that the design and implementation of any form of virtual constellation
could be complex, and would unfold gradually over a number of years.
Our aim has been to discuss the complexities and opportunities, while
providing a vision of a more integrated future of land imaging. The end-
game for virtual constellations that offer enhanced integration and capac-
ity for LCLUC monitoring are systematic, timely, and robust information
products.We have framed those needs and offer thoughts toward further
development and possible implementation. As noted above, there are on-
going inter- and intra-government activities (e.g., within national space
programs and via CEOS and GEO) that are wrestling with these same
topics. Considerations to greater integration are the complexities, costs,
and non-measurement based interests that must also be acknowledged.
Nations build and launch satellites for a number of reasons, ranging
from development of industrial capacity and support and cultivation of
technology sectors within and outside of government, through to engen-
dering national prestige (Belward & Skøien, 2015).

Virtual constellations have two critical responsibility centers, the
first is related tomission development (e.g., NASA, ESA) and the second
is related to ground systems and the provision of data to end users (e.g.,
USGS). At the mission development phase, constellation concepts are
considered and missions are defined with interoperability in mind
(i.e., with similar or same radiometry, with similar or same imaging
modes, with coordinated orbit strategies, with similar or same data for-
mat, with compatible ground segments for reception, archiving and cat-
alogue structure, data handling, data structure, with similar or same
background and or foreground mission operation strategy, harmonized
data policies, etcetera). In the realm of data provision are considerations
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to ensure data compatibility, integration, data fusion, and data process-
ing (including data assimilation and processing, algorithm develop-
ment, definition of high level products using different data sets,
documented error and level of uncertainties for high level products,
stringent definition of standards and protocols for interoperability and
complementarity, etcetera).

At its greatest extreme, the level of coordination required to enable a
virtual constellation would involve a full end-to-end system of co-
developed and deployed space assets, in conjunction with purpose-
developed ground and information systems, delivering integrated and
robust analysis-ready products. The opposite extreme could be very lit-
tle or no coordination, with fully independent programs and sensors,
and data that are serendipitously similar and freely available (the cur-
rent status quo). More tenable perhaps is a level of coordination and in-
tegration that allows for maintenance of national strategic interests and
responsibility centers, while also minimizing unnecessary redundancy
and coordinating potentially incompatible acquisition priorities. For ex-
ample, at a minimum, a virtual constellation in which mission space
segments are coordinatedwould ensure the compatibility of fundamen-
tal data products and the harmonization of data acquisition tomaximize
global coverage. Such is the model that is currently unfolding between
Landsat and Sentinel-2.

The coordination of missions and related data streams toward the
development of some determined fundamental data products could
be recommended for further consideration and development. Such an
approach would fulfill national bottom-up imperatives for meeting a
given information need supported by space-based observations as
well as image and data products suitable for national consumption.
From an international benefits and top-down benefits point of view,
these measures—from a global perspective and via coordination—will
also be interoperable with the sum of the observations and data prod-
ucts greater than the parts. In short, the top-down perspective is
aimed at satisfying bigger picture objectives and aligning with the rec-
ommendations of responsible coordinating bodies (e.g., CEOS) with
the bottom-up element justifying and engendering national agency
support. In fact, 2014 saw the re-initiation of the Land Surface Imaging
(LSI) Virtual Constellation Working Group within CEOS, charged with
generating a viable Implementation Plan to support coordination of
land imaging satellites and data sets in the future.

The recent announcements from the US government to establish a
newprogram for Sustained Land Imaging indicate that notions of virtual
constellations are under development. Rather than the historic ad hoc,
mission-to-mission funding of Landsat (Wulder, White, et al., 2008), a
multi-decadal land imaging program has been initiated (Foust, 2015).
The program includes a space element, as well as an integrated ground
program to produce image and data products, mirroring the key ele-
ments of a virtual constellation as indicated above. Based upon early re-
ports, to shorten development times and reduce risk, Landsat-9 is
proposed as a rebuild (as possible) of Landsat-8 with a planned launch
no later than 2023. Also included in the program is an activity for technol-
ogy development and systems innovation. Building upon the lessons
learned from the technology development stream, alternate imaging
technologies or system architectures could be possible for Landsat-10
(envisioned to be launched in 2030). These launch dates can also be
interpreted within the context of the recent and forthcoming launches
of the Sentinel-2 satellites (Drusch et al., 2012), with the first of the series
successfully launched on June 23, 2015, with the second launch anticipat-
ed to follow approximately a year to 18months later. At the time of writ-
ing Sentinel 2A has collected and successfully downlinked development
and test datasets as elements of the scheduled 3 month commissioning
phase with data collection and dissemination expected thereafter.

5. Conclusions

Facing rapid and complex changes to global ecosystems, virtual con-
stellations provide an opportunity to coordinate the acquisition and
dissemination of EO data in a way that enables scientists and decision
makers to maximize the use of these data and related investments. Vir-
tual constellations are more than just a framework of best practices for
data integration and fusion; rather, they are formalized systems, de-
signed to address specific scientific and operational information needs.
They involve not only sensors andmeasurements, but also data policies
and archives. Hereinwe have diverged from the official definition of vir-
tual constellations offered by CEOS to include a broader suite of possible
forms for virtual constellations, specifically targeted at capturing LCLUC
information. Characterized by their application-readiness, we proposed
three types of virtual constellations: sensors with similar spectral and
spatial characteristics (e.g., ARL 3; Landsat and Sentinel-2); sensors
with different characteristics, but a common measurement principle
(e.g., ARL 2; Landsat andMODIS); and sensors with disparate character-
istics, but complementary information (e.g., ARL 1; Landsat and lidar).
As identified, a key rationale for our definition of virtual constellations
is toward an improved, on-going, and operational capacity for global
monitoring of LCLUC at 30mspatial resolution.While ARL-3 virtual con-
stellations are of greatest interest and priority, we also offer opportuni-
ties supported by awide range of scientific literature that do not require
the direct integration of calibrated reflectance measurements. The re-
cently announced Sustainable Land Imaging program of the United
States is an example where information drivers are used to rationalize
and drive measurement needs, with the emphasis moving from re-
search and capacity development, toward utilization of known capacity
in an operational fashion. Operational programs still have the opportu-
nity for technology development and injection, but are based upon an
expected core of standard measurements and delivery mechanisms
that allow users to build science and applications. With an information
needs focus aimed at a variety of societal benefit areas, measurements
from a range of satellites and data types are required. Virtual constella-
tions composed of differing application readiness levels provide themix
of data capture options required to relate surface conditions and dy-
namics at required spatial and temporal scales.
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