

Who we are

- Founded in 2002, 100% Australian owned and staffed
- · Head office in Canberra
- · Recently opened UK office
- We are a leading Australian re-seller and user of very high resolution optical and radar satellite imagery

Our Domains

Analysis and Analytics

IMAGE & DATA SERVICES

BIG DATA & LINK ANALYSIS / OPEN SOURCE INTELLIGENCE

DEFENCE & HOMELAND SECUR

ENVIRONMENTAL MANAGEMENT

MARITIME

RESOURCE MANAGEMENT

EMERGENCY MANAGEMENT

ENGINEERING & INFRASTRUCTURE

The data we use

- Primarily high-very high resolution 1.5-0.3m GSD
- Even though we specialise in high resolution data and solutions, when approaching projects at a large spatial or temporal scale, we use open-source lower resolution data sources.
- · Decisions around data sources are influenced by customer requirements, eg
 - spatial accuracy
 - · tasking speed
 - reliability
 - budget

How we incorporate Sentinel-1 and -2 ARD data

- GI is an Australian leader in machine learning and artificial intelligence through our OSPREY product
 - Vast amounts of open-source satellite data are captured daily, covering most of the world's surface
 - AI-ML approaches allow us to ingest and analyse this data on a massive scale
 - Open source Sentinel-1 and Sentinel-2 data is used to identify hotspots of:
 - Deforestation
 - Native vegetation changes
 - Urban changes
 - Used to tip and cue investigation with high resolution data

Case Study – Australia-Wide Deforestation Monitoring

- We developed an Al-ML algorithm to detect deforestation Australiawide from Sentinel-2 ARD data from Geoscience Australia
 - Identified natural changes using open source datasets (e.g. MODIS fire scars)
 - Used remaining change hotspots to tip and cue analysis with very high resolution imagery, to validate human-induced deforestation
 - Clients provided with validated deforestation risk maps to assist in reducing supply chain exposure

Case Study - Viticultural Monitoring in Tuscany, Italy

- A European client engaged GI to develop strategies for monitoring and detecting frost damage in their vineyards
 - Late season frosts pose significant financial risks to vineyards
- · Sentinel-2 data used for monitoring
- Late frost events followed up with 0.3m Pleiades Neo data
 - Reduces impacts of spectral mixing with surrounding ground cover

Perspectives on CEOS ARD

- Our clients predominately rely upon larger satellite missions with high resolutions and a high degree of relative and absolute accuracy
 - Open-source ARD is important for large-scale projects and ongoing monitoring, but work best in combination with high resolution data
- · There is a role for existing satellite infrastructure to be used to satellite calibration and validation
 - In a recent project, GI found existing SAR reflector infrastructure in northeast Australia to be suitable for high resolution optical satellite calibration and validation.
 - Existing very-high resolution sensors with high accuracy could play a role in calibrating and validating other satellite datasets.
- Uptake and usage of open source satellite data by industry is limited by:
 - Frequency of collection
 - Resolution constraints

