

JAXA EO Program Updates

CEOS LSI-VC / SDCG / GEOGLAM Joint Meeting European Commission Joint Research Centre

6 September 2018

Takeo Tadono¹ and Ake Rosenqvist^{1,2} ¹ Earth Observation Research Center (EORC) Japan Aerospace Exploration Agency (JAXA) ² soloEO, Japan

Global Change Observation Mission-Climate (GCOM-C)

LST in Summer 2018 by GCOM-C

GCOM-C SGLI image around Tokyo, Japan acquired on Aug. 1, 2018.

Updated Schedule of ALOS/ALOS-2 Data Processing and Open Free Access

As of August 2018

ALOS Series Development and Operation

	2014	2015	2016	2017	2018	2019	2020	2021
М	ALOS-2 (L-SAR) ay 24 Launch Initial (Initial (C/O tial Cal-Val Product relea	ase					
Mission ALOS		Mission of ALOS-3	peration (5 y	ears) Iopment		Post-	mission oper	ration hch
		(Optical	l) ALOS-4 (L-SAR)	Develo	pment			Launch

Acquisition Status of ALOS-2

Data acquisition status by ALOS-2 FBD 10 m (Aug. 2, 2014 – Jul. 1, 2018)

Items		Specifications			
	Туре	Sun-synchronous sub-recurrent			
	Altitude	669 km at the equator			
Orbit	Local Sun Time	10:30 am +/- 15 minutes at the descending node			
	Revisit	35 days (Sub-cycle 3 days)			
Instruments		 Wide-swath and high-resolution optical imager (WISH, as a tentative) Dual-frequencies Infrared sensor (hosted payload) 			
Groun Distan	d Sampling ce (GSD)	 Panchromatic band of WISH (Pa): 0.8 m Multispectral band of WISH (Mu): 3.2 m (6 bands) 			
Quantization		11 bit / pixel			
Swath width		70 km at nadir			
Mission data rate		Approx. 4 Gbps (after onboard data compression: 1/4 (Pa) and 1/3 (Mu))			
Missio downli	n data nk	 Direct Transmission: Ka and X-band via. the Optical Data Relay Satellite 			
Mass		Approx. 3 tons at launch			
Size		$5 \text{ m} \times 16 \text{ m} \times 3.5 \text{ m}$ on orbit			
Duty		10 mins / recurrent			
Desian life time		Over 7 years			

Wide-swath and high-resolution optical imager (WISH)

In-orbit configuration

Observation channel band allocations among optical satellites (visible to near-infrared).

ALOS-3

Strip-map observation	The satellite can normally perform observation covering 70 km in width and 4,000 km in along-track direction as the strip-map observation mode. To increase the acquisition frequency, the images will be taken by less than 25 deg. pointing angle in cross-track direction (GSD < 1m) when the satellite track is in oceans.
Point observation	If the user has a certain ground point or an area of interest (AOI), the satellite can observe there using pointing capability within 60 deg. This mode will be used for natural disaster monitoring, for example.
Observation direction changing	The satellite can observe any given point by the pointing capability up to 60 deg. in all direction against the satellite nadir. In the case of Japan, it can be activated within 24 hours after receiving the request. This will be used when the large natural disaster happens e.g. the expecting Nankai Trough large earthquake.
Wide-area observation	This mode can cover in wide-ranging area of 200 km (in along-track direction) x 100 km (in cross-track direction) by satellite's single orbital passage. This will be also used when the large natural disaster happens.
Stereoscopic observation	Two ways proposes to acquire stereo-pair image: 1) in single orbit path, and 2) combining two strip-map observations by nadir view and backward view in neighboring path after three days (sub-cycle revisit orbit). The way 1) will be however not sufficient base-to-height ratio (B/H) to derive terrain information. As the advantages of the way 2), that is possible to set suitable B/H, and can acquire images over large area. However, this will depend on weather conditions i.e. cloud covers, to success stereo image acquisition within short period as a disadvantage.
	Strip-map observationPoint observationObservation direction changingWide-area observationStereoscopic observation

1 and 5 will be used in the basic observations.

Mission Objectives

- 1. Precise monitoring of land deformation and subsidence for detecting anomalies at an early stage
- 2. Continuation and enhancement of the ALOS-2 mission and also exploring new applications
 - All-weather disaster monitoring
 - Forest monitoring
 - Sea ice monitoring
 - Large infrastructure monitoring, etc.
- 3. Marine monitoring with AIS (Automatic Identification System)

ALOS-4/PALSAR-3

*Single look

InSAR capability between ALOS-2 and ALOS-4

		ALOS-4		ALOS-2	
Master/slav	e of InSAR pair	Stripmap 100/200 km	ScanSAR 700 km	Stripmap 50/70 km	ScanSAR 350/490 km
ALOS_4	Stripmap 100/200 km	Ο	0	Ο	Ο
AL03-4	ScanSAR 700 km	Ο	0	Ο	×

- ✓ ALOS-4 reference orbit is the same as ALOS-2
- ✓ Controlling accuracy is within +/- 500 m (= small baseline)

Multi-footprint Observation LIDAR and Imager (MOLI)

- JAXA LIDAR mission to fly on the International Space Station, Japan Experimental Module (ISS-JEM)
- Mission Design Review completed May 2017
- Operations foreseen from around 2020

Envelope 1600x640x830

MOLI

ISS

MOLI characteristics

- Demonstration mission on ISS-JEM
- **ISS** Orbit Altitude 400 km, Inclination 51.6 deg
- ٠ Instruments
 - **Double beam LIDAR**
 - Wavelength: 1064 nm
 - Pulse width: less than 7 ns
 - **PRF: 150 Hz**
 - **Double beam (2 foot prints)**
 - **Multiband Imager**
 - Resolution: 5 m
 - Swath: 1 km
 - Band: NIR, R, G
- Canopy measurements ٠
 - Foot print 25m diameter
 - Height accuracy = < 3m
- Mission duration; > 1 year ٠
- Planned Launch year 2020 •

Using i-SEEP platform, more flexible environment and services by astronauts are expected. Laser Transmitter to be returned (post mission) for degradation evaluation on ground.

Foot print design for terrain relief calibration:

- For calibration of terrain relief:
 - Staggered double footprints with the same transmitting timing
- For estimation of ground surface slope angle:
 - Slope estimation using 3 footprints
 - Target slope: \leq 30 deg. No snow cover.

Standard Products (quality assured)

level	Product category	Products	Remark
	Lidar footprint products	Full waveforms	including geolocation data
L1	Imager product (1km swath)	Image	geometrically corrected
12	Lidar footprint products	Canopy heights	including geolocation data
		AGB [*]	including geolocation data

*: Above Ground Biomass

Research Products (quality evaluated)

level	Product category	Products	Remark	
L3	Synergy products with MOLI Lidar and imager (1km swath)	Tree canopy heights Forest biomass	Line to 2D expansion	
	Synergy products with MOLI and	Tree canopy height Map	"Wall2Wall"	
L4	other satellites Wall-to-Wall map products	Forest biomass map	expansion	

- JAXA's EO program and status introduced:
 - ✓ GCOM-C is in orbit, and GOSAT-2 will be soon,
 - ✓ ALOS-2 is working well; Global mosaic production is ongoing as ARD,
 - ✓ Reprocessing ALOS AVNIR-2 and PALSAR are ongoing,
 - ✓ ALOS-3/4 and MOLI are under development.
- IGARSS 2019 will be held in Yokohama, Japan <u>https://igarss2019.org/</u>
 - ✓ Plan to propose the invited session on the related CARD4L

July 28 - August 2, 2019 Yokohama, JAPAN Pacifico Yokohama