
Chemical Data assimilation of satellite

retrievals

H. Elbern1,2, A. Strunk1, E. Friese1, L. Nieradzik1

1Rheinisches Institut für Umweltforschung

an der Universität zu Köln

and
2ICG-2, Research Centre Jülich

  ACC   ACC FrascatiFrascati, 15.-17..6.2009, 15.-17..6.2009



Contents

• Introduction: short reminder for the troposphere

• NO2 trop. column assimilation

• PM assimilation



Objective of atmospheric data assimilation

The ambitious and elusive goal of data

assimilation is to provide a dynamically

consistent motion picture of the atmosphere and

oceans, in three space dimensions, with known

error bars.

M. Ghil and P. Malanotte-Rizzoli (1991)



Terminology

Inverse Modelling

The inverse modelling problem consists of using the

actual result of some measurements to infer the

values of the parameters that characterize the

system.

A. Tarantola (2005)



Objective of atmospheric data assimilation (2)

• "is to produce a regular,
physically consistent
four dimensional
representation of the state
of the atmosphere

• from a heterogeneous
array of in situ and remote
instruments

• which sample imperfectly
and irregularly in space
and time.

Data assimilation

• extracts the signal from
noisy observations
(filtering)

• interpolates in space and
time (interpolation) and

• reconstructs state variables
that are not sampled by the
observation network
(completion).“ (Daley,
1997)



Characteristics in tropospheric chemistry data assimilation,

mathematical viewpoints

• highly underdetermined system on 2 levels

– (few observations (y) with respect to degrees of
freedom of model: dim(x)>>dim(y) )

– scalar column value  profile vector

• regionally/locally highly nonlinear dynamics

• constraints by physical laws/models are
insufficient

• assimilation or inversion problem to be solved?



Optimality criteria: Which property can be attributed to

our analysis result?

(Need for quantification)

• maximum likelyhood:

– maximum of probability density function

• minimal variance: l2 norm

– parameters optimal, for which analysis error spread is
minimal (for Gaussian/normal and log-normal error
distributions),  Best Linear Unbiased Estimate (BLUE)

• minimax norm (discrete cases)

• maximum entropy



Optimal Interpolation

Notation: Ide, K., P. Courtier, M. Ghil, and A. Lorenc, 

Unified notation for data assimilation: operational sequential and variational, 

J. Met. Soc. Jap., 75, 181--189, 1997. 
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Advanced Advanced spatiospatio-temporal methods used in -temporal methods used in tropospherictropospheric chemistry data chemistry data

assimilationassimilation

Spacio-temporal BLUEs applied in tropospheric chemistry data

assimilation include:

• 4D var:

– with EURAD (Elbern and Schmidt, 1999, 2001, Elbern et al., 2007),

– with STEM 2K1 (Chai et al., 2006).

• Kalman Filter

– with LOTOS model (van Loon et al, 2000), (RRSQR)

– with EUROS model (Hanea et al. 2004) (En+RRSQRKF)



Question: Which parameter to be optimized?

Hypothesis:

initial state and emission rates are least known for a

skillful forecast

emission biased model state

only emission rate opt.

only initial value opt.

true state

observations

time

co
n

ce
n

tr
at

io
n

joint opt.

(Elbern et al. ACP 2007)



In the troposphere, for emission rates, the product (paucity of

knowledge*importance)

is high



Adjoint integration Adjoint integration ““backward in timebackward in time””

How to make the

parameters of resolvents i

M(ti-1,ti) available in reverse

order??



EURAD-IM

4D-var system  (1)

EURAD-IM adjoints

• RACM

• implicit vertical diffusion

• explicit horizontal diffusion

• Bott 4th order advection

• emissions: EMEP, TNO

• MADE, SORGAM adjoint version under way

“mother grid” (GEMS MACC)

+3 further generations (PROMOTE)

resolutions

45 km, 15 km, 5 km, 1 km



EURAD-IM

4D-var system  (2)

• horizontal and vertical covariances: full anisotropy

and inhomogeneity available by diffusion

approach (Weaver and Courtier, 2001)

• preconditioning: options logarithmic, square root

diffusion operator

• minimisation quasi-Newton by L-BFGS



Formulation of the background error covariance matrix:
Diffusion paradigm (Weaver and Courtier, 2001)

4D var needs the square root of the background error covariance matrix B (O=1012):

Basic idea: 

1. formulate covariances by Gaussians

2. approximate Gaussians by integration of the diffusion operator over time T

3. calculate B1/2 by integration over time T/2 (comp. cheap), and 

4. intermittent normalisation (comp. more challenging)



Background Error Covariance Matrix B

(short design outline)

K=# Ensembles;  i,j neighboring cells

TL 2=diffusion coefficients :

Correlation length L to neighboring gridcell:

, , ,

1. How to obtain the covariances?

Ensemble/NMC approach:

2. How to process this information?

Translate into Diffusion coefficients difusion paradigma



 GLOBMODEL case study

NO2 column focussed

• resolution to meet OMI: 

 15 km horizontal resolution selected

• attention to forecast error covariance design: 

spatial correlation exploitation via inhomogeneous

and anisotropic radii of influence,

• DA method: chemical 4D-var as BLUE, incl emissions,

with externally provided  a prioris:  

 NO2 columns errors from data provider, model error

from other case studies, i.e. no “tuning” introduced



Satellite information:

ESA UV-VIS satellite footprints  Ruhr area

comparison

SCIA
GOME1

GOME(1u).2

OMI

minimal areas:

GOME 1 320 x 40 km2

(special mode)      80 x 40  “

SCIAMACHY   60 x 30  “

GOME 2   80 x 40  “

OMI   24 x 13  “

Ruhr area domain     90 x 80 km2

1 km resolution

(~12 000 000 inhabitants)



Error variances applied

for period 1.-10.7.2006 over model domain

0.9*10151.2*1015SCIAMACHY

0.8*10151.4*1015OMI

( y)E(y)molecules/cm2

NO2 columns from KNMI data files: R (diagonal)

Forecast error covariances  B schematic formula

Bii (spec,lev)= max{1 ppb,0.8*var(spec,lev), 0.5 max(spec,lev)}



Average OMI averaging kernel profile

over model domain for July 9th, 2006

model domain mean averaging kernel. 



Exploitation of NO2 column averaging kernel

information

• shape largely dependent on optical properties of

the atmosphere (cioud cover), rather than NO2

• typical maximal sensitivity above the  boundary

layer

• does not allow a clear distinction between PBL or

lower free troposphere pollution burden



How to proceed to obtain benefit from trop. column

integral information?
(A typical problem of  Inverse Modelling by Integral

Equations)

Two more specific questions:

• When is it justified to project averaging kernel

information to the surface?

• Can this be done without destroying the BLUE

property of the assimilation algorithm?



Partial observation operator  H



Radius of Influence ((de-)correlation length):

Extending the information from an observation location

Textbook: 

horizontal influence radius L

around a measurement site,

to be based on a priori 

statistical assessments

L

vertical

cut

L

1D horizontal structure function,

to  be stored as a column of the

forecast error covariance matrix

diffusion operator

construction



PBL top

vertical Radius of Influence:

Extending the information from observation location
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Assimilation of  GOME NO2 tropospheric columns, 5.8.1997

A case of lifted NO2 maxima

GOME NO2 columns: Courtesy of A. Richter, IFE, U. Bremen
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Comparison of NO2 tropospheric columns
in molecules/cm2 for July 6th, 2006, 09-12 UTC.

assimilated  values (y) | EURAD forecasted (Hxb) | column analyses (Hxa)



Data assimilation result from tropospheric columns

for July 6th, 2006.

NO2 model columns by OMI  and SCIAMACHY

assimilation interval 09-12 UTC.

Analysed NO2 colum       |          Difference field   | surface concentration

changes

NO2 ppb
molecules/cm2



Data assimilation result in terms of tropospheric columns for July

7th, 2006. NO2 model columns based on OMI  and SCIAMACHY

assimilation within the assimilation interval, 09-12 UTC.

pure forecast assimilation based

forecast



Qualitative assessment of emission correction

factors for July 7th, 2006

Emission inventory

values

to be increased

to be reduced



Control run (OmC) (no data assimilation at all,) black bold line, 

assimilation based forecasted values (OmF) green bold line, 

analyses (OmA) blue bold line. 

For comparison: Gaussian fit to OmF pdf  by 

mean and standard deviation given by broken purple line. 

SCIAMACHY

OSCIAmXOMI probability density functions

for July 6th (left), and July 8th, (right).



OMI

OOMImXOMI probability density functions

for July 6th (left), and July 8th, (right).

Control run (OmC) (no data assimilation at all,) black bold line, 

forecasted values (OmF) green bold line, 

analyses (OmA) blue bold line. 

For comparison: Gaussian fit to OmF pdf  by 

mean and standard deviation given by broken purple line. 



Objective function based normalized costs of combined OMI and

SCIAMACHY assimilation runs between July 3rd -8th, 2006.

Black bars: control run without any data assimilation,
for reference and normalisation to value 1 only.

 Green bars: one day forecast costs. Blue bars: analyses costs.



Lessons

• The unfavourable kernel profiles can and must be balanced

by more sophisticated vertical covariance design: “forcing

information down to the surface”

• additional statistics for tuning this needed

• longer assimilation intervals needed: also to improve

emission correction factors on a sound basis, with respect

to working days, saturdays, and sundays

• ensemble generation should not be confined to emission

perturbations, but also perturbed meteorological fields

(from ECMWF), initial values, and j-values



Assimilation of Aerosol observations

• In situ:
EEA Airbase: Database of groundstations of EU member countries & states:

• 450 stations for PM10 (2003)

• No PM2.5. (4 stations in UK only)

• Satellite measurements:

SYNAER (SYNergetic AErosol Retrieval, DLR-DFD, [Holzer-Popp, 2001])*

• combines GOME&ATSR-2, SCIAMACHY&AATSR measurements

aboard ERS-2/ENVISAT

• ATSR-2/AATSR:

dark field detection, BLAOT (Boundary Layer Aerosol Optical Thickness)
and albedo are calculated

• GOME/SCIAMACHY: 

Provides PM0.5, PM2.5 and PM10 columns and its composition (6 intrinsic
species)



Aerosol Chemistry in MADE
Modal Aerosol Dynamics for

EURAD/Europe

(Ackerman et al., 1998, Schell 2000)

dMi
k/dt=nuki

k+coagii
k+coagij

k

                 +condi
k+emii

k

Mi
k:=kth Moment of ith Mode

Bridge from optical to chemical 

properties 

assimilation of aerosol

By sattelite retrievals: e.g.

MERIS MODIS 

AATSR+SCIAMACHY,…



Example: chemical complexity:

The EURAD Secondary ORGanic Aerosol Model (SORGAM)



EEA PM10 stations

SYNAER PM10

retrievals

Aerosol observations (14.7.2003, ~10:00 UTC)



3Dvar aerosol assimilation (13.7.2003)
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3Dvar aerosol assimilation (14.7.2003)

biomass burning case in Spain
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Do aerosol data assimilation effects accumulate? (14. July 2003)

No previous assimilation

only 14. July 2003

assimilation on previous days 10 UTC

Accumulation of retrieval information over
14 days


