
Retrievals of tropospheric ozone profiles from the synergism of AIRS and OMI: methodology and validation

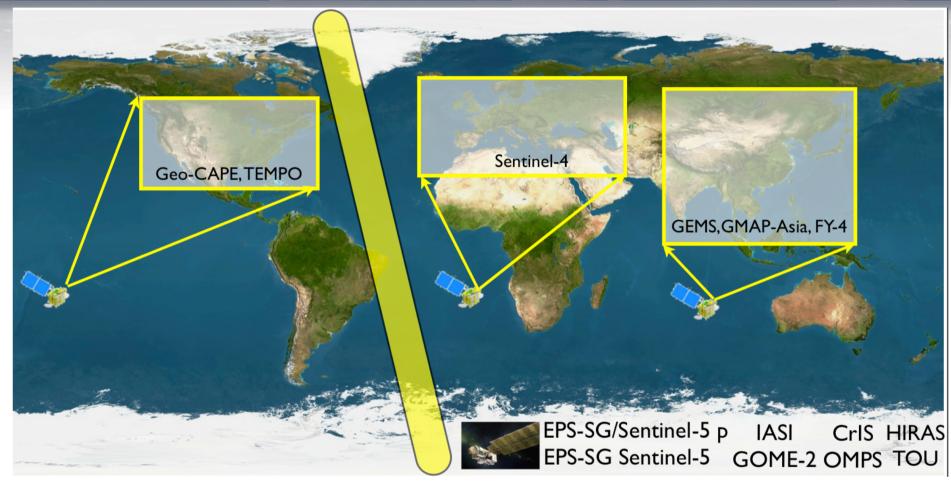
Dejian Fu¹, Susan Kulawik^{1,2}, Kazuyuki Miyazaki¹, Kevin Bowman¹, John Worden¹, Annmarie Eldering¹, Nathaniel Livesey¹, Joao Teixeira¹, Fredrick Irion¹, Robert Herman¹, Gregory Osterman¹, Xiong Liu³, Pieternel Levelt^{4,5}, Anne Thompson⁶, and Ming Luo¹, with thanks to KORUS-AQ, TES, AIRS, OMI, and CrIS teams

¹NASA Jet Propulsion Laboratory, California Institute of Technology, USA

² NASA Ames Research Center, USA

³ Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts, USA

⁴ Royal Netherlands Meteorological Institute, De Bilt, 3731 GA, the Netherlands

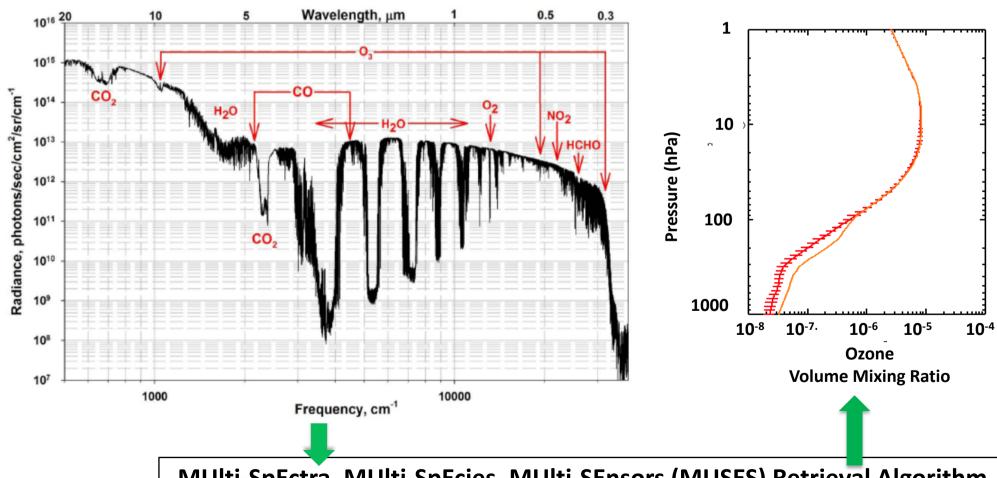

⁵ University of Technology Delft, Delft, 2628 CN, the Netherlands

⁶ NASA Goddard Space Flight Center, Greenbelt, Maryland, USA

Bowman, *Atm. Env. 2013*

Towards an Air Quality Constellation

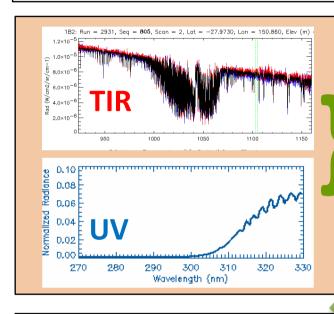
How does the constellation improve knowledge of global air quality?


- GEO sounders (GEO-CAPE, TEMPO, Sentinel-4, GEMS) will provide an unprecedented number of composition observations at high spatial-temporal resolution.
- LEO sounders (IASI, CrIS, S5p) provide the global picture and thread the GEO observations together.

The Synergic Observations

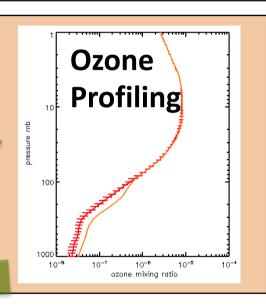
Joint LW/SW or ultra-high spectral resolution measurements distinguish upper/lower troposphere.

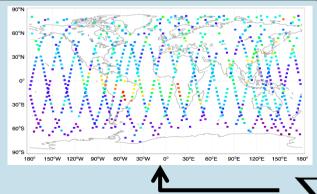
- TIR observations are sensitive to the free-tropospheric trace gases.
- UV-Vis-NIR observations are sensitive to the column abundances of trace gases.



MUlti-SpEctra, MUlti-SpEcies, MUlti-SEnsors (MUSES) Retrieval Algorithm

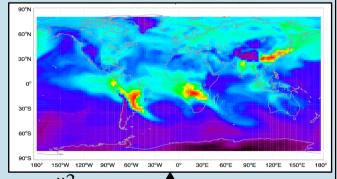
Connecting Remote Sensing to Assimilation

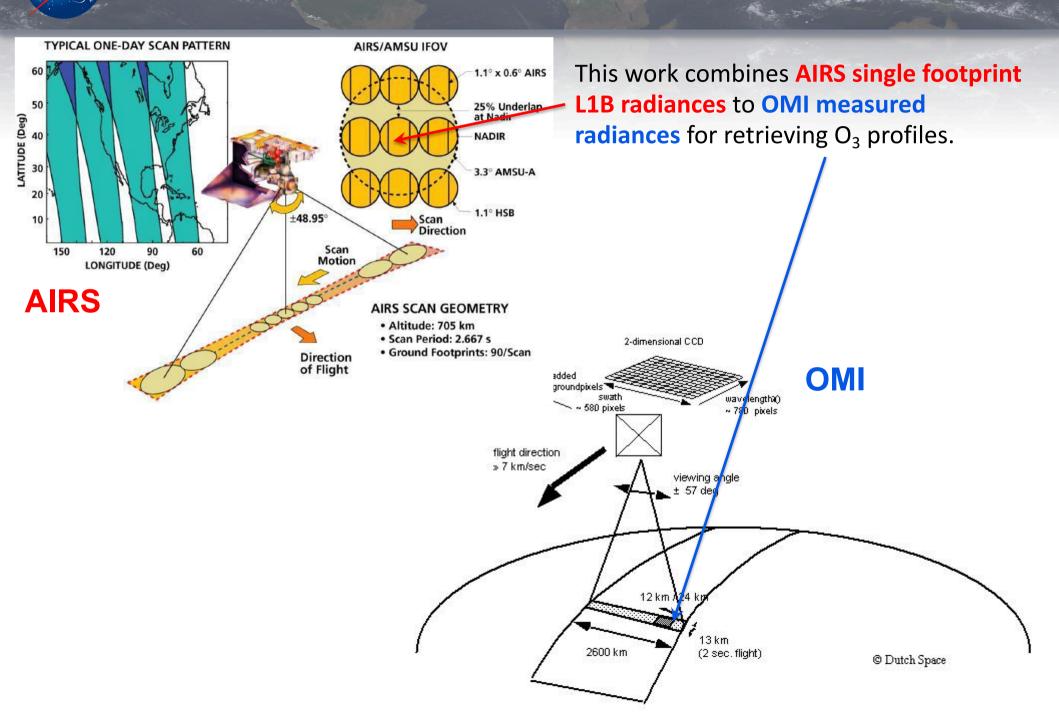

JPL MUSES algorithm delivers retrieved trace gas concentration profiles + observation operators needed for trend analysis, climate model evaluation, and data assimilation.


$$\|\mathbf{y} - \mathbf{F}(\mathbf{x}_a)\|_{\mathbf{S}_n^{-1}}^2 + \|\mathbf{x} - \mathbf{x}_a\|_{\mathbf{S}_a^{-1}}^2$$

MUSES Retrieval Algorithm

$$\hat{\mathbf{x}} = \mathbf{x}_a + \mathbf{A}(\mathbf{x} - \mathbf{x}_a) + \mathbf{G}\mathbf{n}$$


Operational Data Processing


Data Assimilation

$$\mathbf{H}_{i}(\bullet) = \mathbf{x}_{a} + \mathbf{A}_{i}(\bullet - \mathbf{x}_{a})$$

$$\sum_{i} \left\| \hat{\mathbf{x}}_{i} - \mathbf{H}_{i}(\mathbf{x}) \right\|_{(\mathbf{G}_{i}\mathbf{S}_{n}^{i}\mathbf{G}_{i}^{T})^{-1}}^{2} + \left\| \mathbf{x}_{0} - \mathbf{x}_{B} \right\|_{\mathbf{B}^{-1}}^{2}$$

NASA Combined AIRS Single Footprint to OMI Measurements

Data Processing of Joint AIRS/OMI O₃ Retrievals

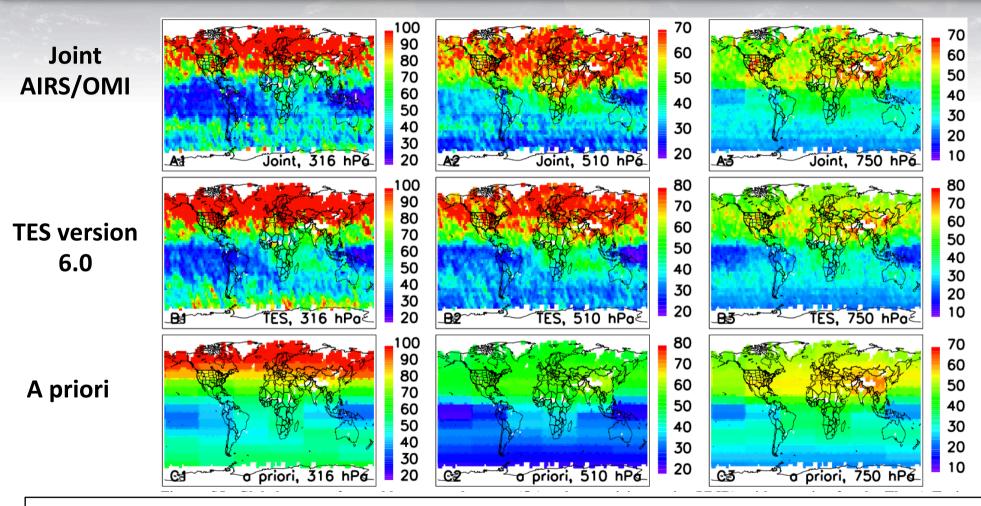
Configured in two modes: global survey (GS) and regional mapping (RE).

GS – Provides profiles with a spatial sampling similar to TES global survey

- 2006 2009, 2016, 2018, processed for all months
- 2010 2017, processed for some months specified by the user community
- Forward Processing: Oct, 2017 to Present
- Reanalysis Processing: 2005 to 2017 (10x spatial coverage, completion expected in 2019)

RE – Processes all available measurements for flight campaigns

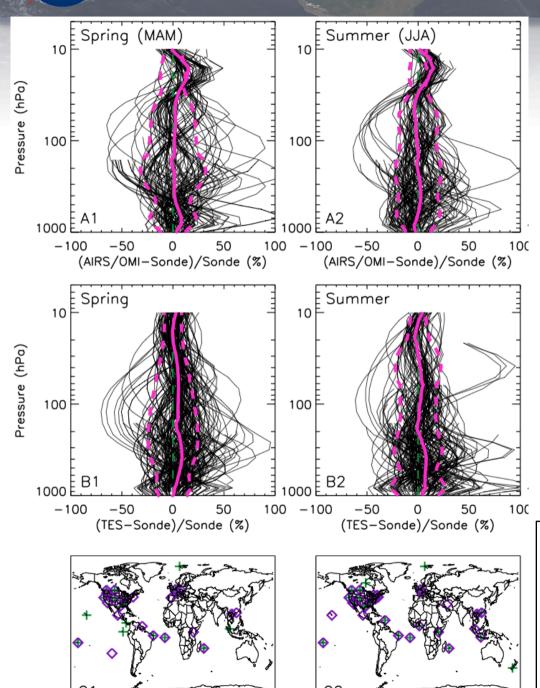
- KORUS-AQ, Apr Jun 2016
- ORACLES, Aug, Sept 2016
- POSIDON, Sept, Oct 2016
- Mexico City, Oct 2013
- CrIS CO and O_3 over CONUS for the FIREX-AQ campaign.


L2 data access:

- Data products have been saved in Hierarchical Data Format, a common format used in the NASA Earth Observation System level 2 products
- Data products access + validation report & IDL Reader via following link: https://tes.jpl.nasa.gov/multi-instrument-products/airs-omi

Welcome/thanks community help on scientific applications and performance evaluation/characteristics this decade long data for future algorithm optimization.

Joint AIRS+OMI O₃ vs. TES Global Survey Mode



Fu et al., "Retrievals of tropospheric ozone profiles from the synergism of AIRS and OMI: methodology and validation", AMT, 11, 5587-5605, 2018.

- ➤ The correlation coefficients of joint AIRS+OMI vs. TES ozone data: 0.71 0.92 for all months.
- The characteristics of the joint AIRS+OMI retrievals, in terms of vertical sensitivity and estimated uncertainty characteristics, are equivalent to those of TES data.

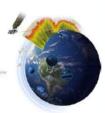
Comparisons to WOUDC Ozonesondes

Differences (Satellite – WOUC Sonde with Satellite Observation Operator Applied)	316 hPa	Spring	
		AIRS+OMI	TES
	Mean (ppb)	2.8	6.1
	Mean (%)	1.3	8.6
	RMS (ppb)	17.1	19.2
	RMS (%)	25.6	23.7
	510 hPa	Spring	
		AIRS+OMI	TES
	Mean (ppb)	1.3	3.6
	Mean (%)	3.8	7.0
	RMS (ppb)	7.6	9.2
	RMS (%)	17.2	17.4
	750 hPa	Spring	
		AIRS+OMI	TES
	Mean (ppb)	2.4	1.7
	Mean (%)	8.0	3.4
	RMS (ppb)	7.6	6.9
	RMS (%)	21.1	16.2
Number of WOUDC Sonde Sites		20	25
Number of Satellite/Sonde Coincidences		131	197

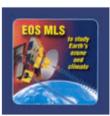
Coincident criteria

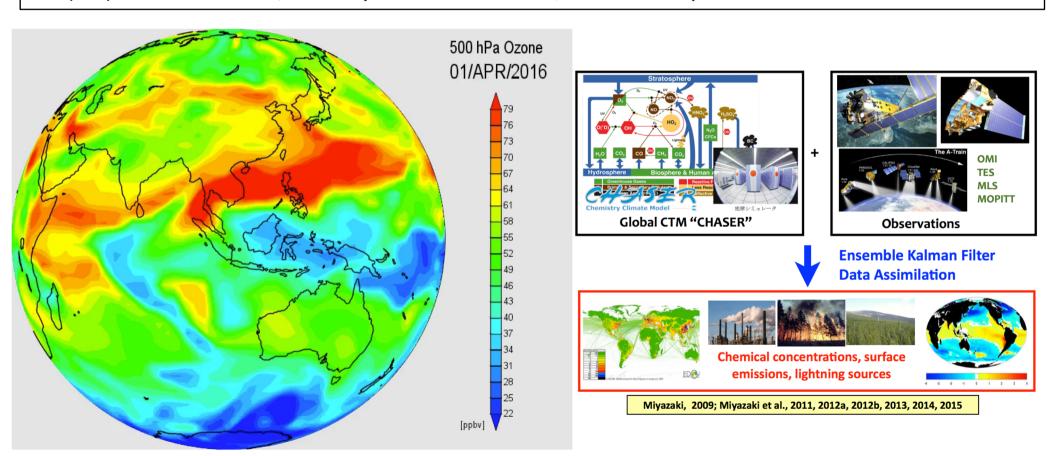
- > Passed retrieval quality check
- ➤ Distance < 300 km; Time diff. < 4 hours
- Day Time
- Cloud optical depth < 2.0</p>

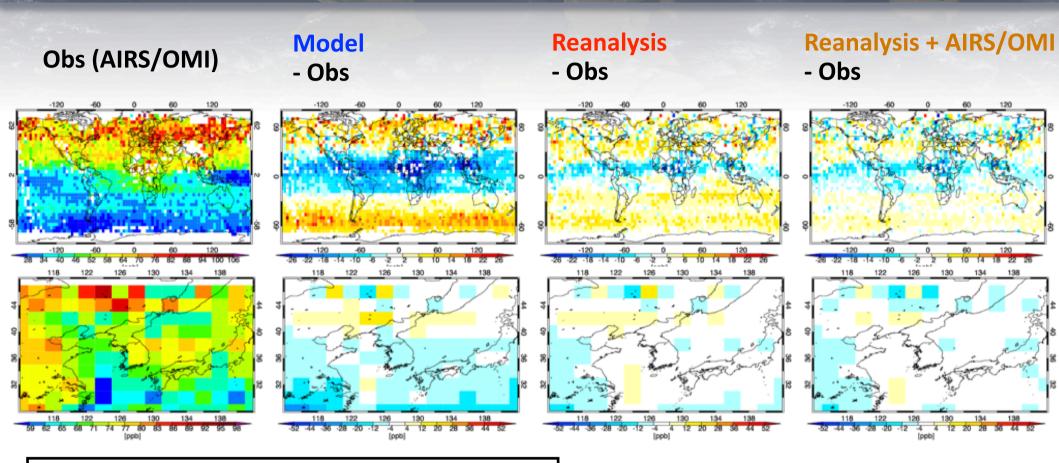
AIRS/OMI tropospheric ozone assimilation and chemical reanalysis during the NASA KORUS-AQ aircraft campaign


K. Miyazaki ¹, D. Fu¹, K. W. Bowman¹, J. Neu¹, G. Osterman¹, S. S. Kulawik², T. Sekiya³, K. Sudo³, Y. Kanaya³, M. Takigawa³, K. Ogochi³, B. Gaubert⁴, J. Barre⁴, L. Emmons⁴, and KORUS-AQ team

- ¹ NASA Jet Propulsion Laboratory, California Institute of Technology, USA
- ² NASA Ames Research Center, USA
- ³ Japan Agency for Marine-Earth Science and Technology, Japan
- ⁴ National Center for Atmospheric Research, USA

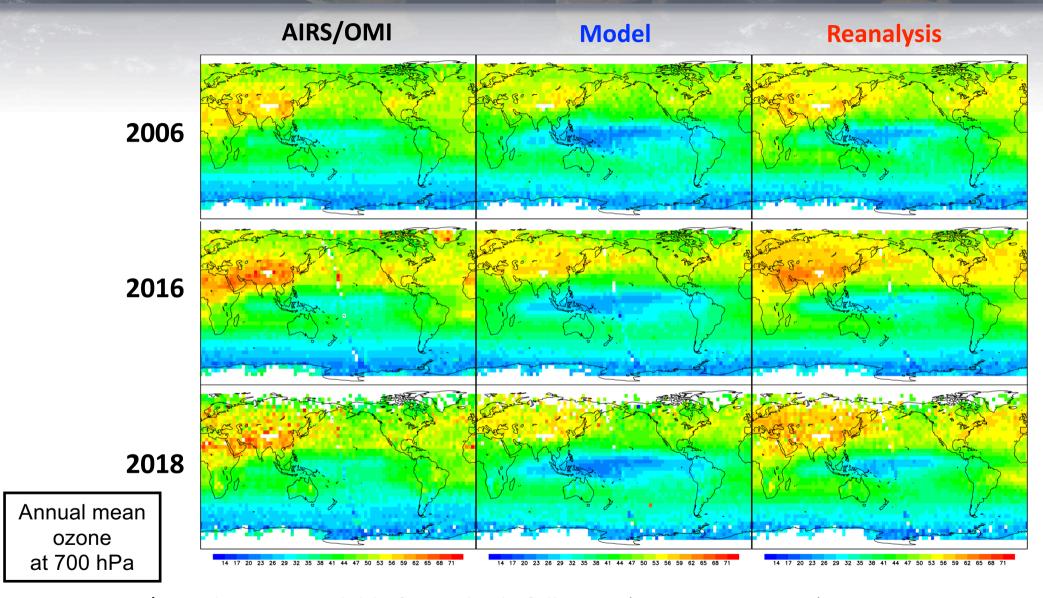





Assimilated Global Ozone Fields

- Joint AIRS/OMI ozone profiles have been assimilated into CHASER system (Miyazaki et al., JGR, 124, 387–413, 2019).
- CHASER system assimilated the OMI (NO_2), GOME-2 (NO_2) MLS (HNO_3 and O_3), MOPITT (CO) for KORUS-AQ ,recently assimilated AIRS/OMI ozone profile data

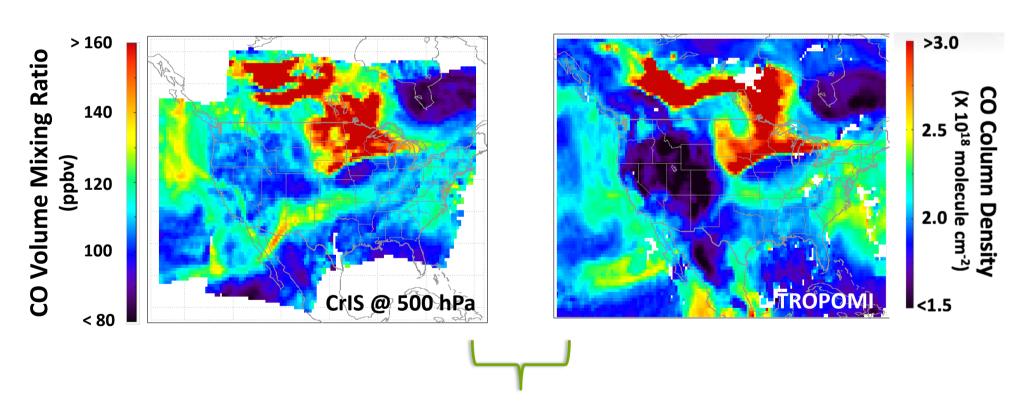
AIRS/OMI applications for chemical reanalysis


Ozone at 510 hPa during NASA KORUS-AQ

AIRS/OMI data was successfully assimilated.

- Miyazaki et al., "Evaluation of a multi-constituent chemical reanalysis during KORUS-AQ: Role of dynamics and emissions", JGR, 124, 387–413, 2019.
- Based on DC-8 comparisons, we confirmed that combining precursors' emission optimization and direct ozone assimilation from AIRS/OMI is an effective method to obtain sufficient corrections on the entire tropospheric ozone profiles for any meteorological condition.

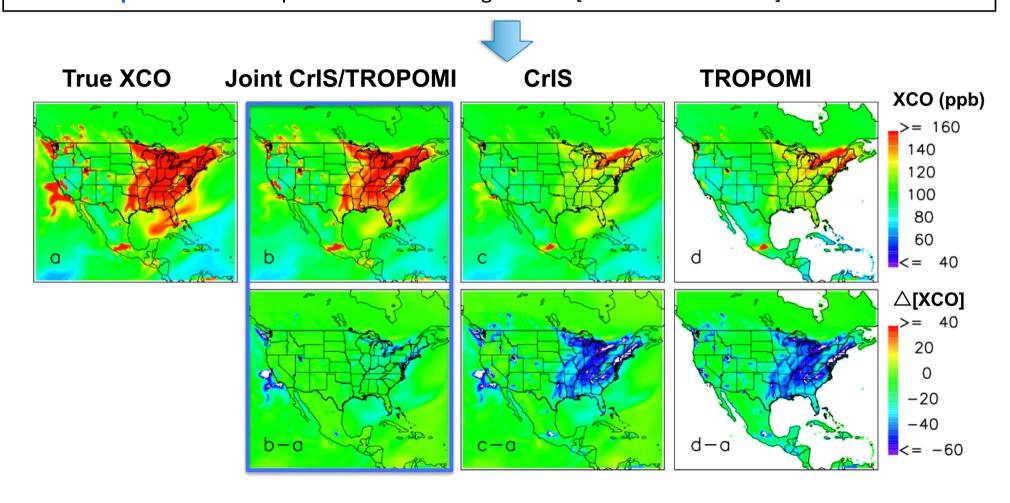
AIRS/OMI applications for chemical reanalysis



- AIRS/OMI data are available for multiple full years (2006, 2016, 2018)
- Good agreements with ozone reanalysis assimilated multi-constituent satellites
- Provide additional constraints on decadal global ozone reanalysis

Towards CrIS/TROPOMI Synergies

- CrIS CO is being processed through the MUSES-SDPS for the ongoing FIREX-AQ campaign.
- CrlS vs. TROPOMI, good qualitative agreement on May 30th, 2019.



Integration of these two sensors should enhance the near surface layer sensitivity.

High Resolution Near Surface CO Data via Combining CrIS/TROPOMI Measurements

- In October 13, 2017, ESA Sentinel 5 Precursor (S5P) launched successfully, forming a satellite constellation with Suomi-NPP satellite.
- It provides an unique opportunity to extend and improve the MOPITT joint TIR/NIR CO data, via combining CrIS/TROPOMI measurements [Fu et al., AMT, 2016]
- XCO maps: near surface partial column averaged VMR [surface to ~750 hPa]

NASA

Summary

- MUSES retrieval algorithm combines radiances measured from long wavelength (TES, AIRS, CrIS) and short wavelength (OMI, OMPS, TROPOMI) space sensors to retrieve the vertical concentration profiles of primary gaseous pollutants including O_3 and CO.
 - Joint AIRS/OMI and CrIS/OMPS retrieved O_3 profiles can distinguish the abundances in the upper troposphere from the lower troposphere (Fu et al., AMT, 2018).
 - Joint CrlS/TROPOMI would help in extending the MOPITT CO profile data (Fu et al., AMT, 2016).
- The observation operators of joint AIRS/OMI data products enable data assimilation, e.g., "CHASER-DA", demonstrating the significant impacts on ozone distributions (Miyazaki et al., JGR, 2019).
- The O_3 and CO data products from MUSES algorithm could help in the quantitative attribution of anthropogenic emissions and natural influences of pollutants.
- AIRS/OMI and multispectral products will continue through NASA Tropospheric Ozone Trends Science program. With the MUSES Science Data Processing System (MUSES-SDPS), the sampling will increase 10x relative to TES GS starting in FY21.
- Towards CrIS/TROPOMI synergies for CO profiling

Thank you!