

Aerosol observations from current and future EUMETSAT and Copernicus Missions

R. Munro, M. Vázquez - Navarro, J. Chimot, T. Marbach, A. Cacciari, A. Holdak,

G. Poli, R. Lang, B. Fougnie

Aerosol Product Map Missions & Products

	0	perational	In de	development Not yet committed (under study) Not Applicable								
Product*/ Instrument		Metop	Metop MSG		Sentinel 3			Metop-SG			MTG	
		РМАР	SEVIRI	OLCI	SLSTR	SYN	ЗМІ	S5 UVNS	МАР	FCI	S4 UVN	
Cloudy pixel identificat	ion											
Aerosol type												
Fine mode fraction												
Aerosol Optical Depth												
Aerosol Optical Depth (multi-band)												
Single Scattering Albed	lo											
Refractive index – real												
Refractive index – imaginary												
Effective radius												
Aerosol height												
Aerosol Absorbing Inde	ex											
Side Product: BPDF												
Side Product: BRDF												

* Some aerosol products at Satellite Application Facilities : Climate Monitoring (CM-SAF) and Atmospheric Composition (AC-SAF)

2 EUM/RSP/VWG/19/1088360, v1 Draft, 31 May 2019

The Polar Multi-sensor Aerosol Product (PMAp) Operational near-real time AOD from EPS/Metop

PMAp: Polar Multi-sensor Aerosol product from GOME-2, AVHRR and IASI on Metop

- AOD @550nm over land & ocean, aerosol type classification
- at GOME-2 PMD spatial resolution 10x40 km² Metop-B and -C 5x40 km² Metop-A
- Retrieval over water (PMAp version 1) fully operational product since October 2014
- <u>Retrieval over water & land</u> (PMAp version 2) fully operational product since February 2017 (PMAp version 2.1.)

PMAp A+B+C for one full day

- Degradation correction (M01, M02) and user-required adjustment (M01)
- Improved IASI dust/ash detection + flagging of aerosol contaminated clouds.
- LER database upgrades:
 - Angular dependency of the surface with the VZA (θ) for each GOME pixel

 $A_{D LER} = ALER + a + b\theta + c\theta^2$

• Temporal interpolation from consecutive monthly averaged LER maps

 $A_{LER_{interp}} = ((1.0 - FracMonth) * A_{LER FloorMonth}) + (FracMonth * A_{LER CeilingMonth})$

PMAp v2.2 AOP Retrieval CAMS Evaluation

• CAMS (external user evaluation)

PMAp Validation Data Set

period 1. June - September 2013 period 2. February - May 2015

- Instrument offset correction (M01)
- Observation of "hotspots":
 - Relatively large regions of AOD == 4
 - Not present in v. 2.1.
 - Not frequent
 - Aerosol type: **DUST**.

PMAp Aerosol Optical Depth 2013081800000 2013081900000

PMAp v2.2 AOP retrieval Hotspot correction

User-required adjustment

PMAp version 2.2. Upgrades Lambertian Equivalent Reflectance (LER)

Angular dependency of the surface with the VZA (θ) for each GOME pixel

 $A_{D LFR} = ALER + a + b\theta + c\theta^2$

Difference in AOD between angular and "regular" LER

Temporal interpolation from consecutive monthly average LER maps

 $A_{LER interp} = ((1 - FracMonth) * ALER_{FloorMonth}) + (FracMonth * ALER_{CeilingMonth})$

EUMETSAT

- Internal **Aeronet** validation (ongoing)
- PMAp v.2.2 benchmarking periods
 to be delivered to CAMS for evaluation (processing)

- Internal Review Board
- PMAp operational chain tests
- Planned start of dissemination: Summer 2019

Sentinel-3 Aerosol NRT – SLSTR AOD

Initial Algorithm & Processor

- Developments in the framework of S3 Mission Performance Centre (MPC) under ESA contract.
- Final Delivery to EUMETSAT in October 2018.
- EUMETSAT fully in charge of maintenance, long-term evaluation, validation monitoring, evolution, deployment.

• Scientific approach

University of Swansea (P. North, et al., S3 AOD NRT ATBD, 2016)

- ✓ Historically applied to dual-view instruments ATSR 1&2, AATSR (ref. ESA CCI_aerosol project)
- ✓ 5 spectral channels at 554 nm, 659 nm, 868 nm, 1.613 um, 2.255 um
- ✓ Viewing constraints: multi-angular dual-view over land, nadir view over ocean
- ✓ Physical based surface model Iterative optimization of AOD, aerosol model & surface reflectance
- ✓ Spatial resolution 4.5 km
- On-going analyses / validation performed by EUMETSAT for necessary evolutions before operational release:
 - ✓ Optimal adaptation based on up-to-date knowledge of SLSTR sensor specificities (*e.g.* geometry, radiometry calibration, etc..)

SLSTR AOD NRT – Expected potential (some examples)

S3/SLSTR AOD NRT Product – Evaluation over ocean

10⁰

Collocation with MODIS Terra AOD 3 km (Collection 6.1) Spring 2019 (2019.03.01 – 2019.05.20)

104	SLSTR – MODIS 3 km	N cloud-free collocation	Mean	Std	RMS	R
10 ³	North Atlantic	870 828	-0.02	0.05	0.06	0.96
log10(counts)	South Atlantic	1 272 592	-0.02	0.03	0.043	0.89
	South Pacific	2 583 706	-0.02	0.03	0.036	0.83
10 ¹	Indian	1 152 797	-0.03	0.03	0.041	0.78

Over OCEAN

Sentinel-3 for Atmosphere – SLSTR AOD Global

An initial processor from the ESA S3 Mission Performance Centre (MPC) is at EUMETSAT

- Historically applied to dual-view instruments ATSR 1&2, AATSR (ref. ESA CCI_aerosol project)
- Evolutions necessary thanks to up-to-date knowledge about SLSTR specifies (*cf.* geometry)
- Specification & validation of the algorithm evolutions by EUMETSAT

University of Swansea (P. North)

Swansea University

FINNISH METEOROLOGICAL INSTITUTE

Finnish Meteorological Institute (FMI) – G. de Leeuw, P. Kolmonen,

A. Lipponen, L. Sogacheva, T. Virtanen.

In parallel – Independent activity / frame

- Better understand SLSTR instrument specificities (geometry, radiometric calibration)
- Quantify theoretical SLSTR multi-spectral AOD product performance w.r.t NRT requirements
- KOM 2019.04.24

SLSTR AOD(550 nm) Requirements = 0.05 (sea), 0.1 (land). Future SLSTR AOD product expected to be assimilated by CAMS

NB: a new OLCI AOD activity has started - To exploit the OLCI high spatial resolution for a multi-term statistical retrieval approach with spatial / temporal constraints between fine pixels in view of a continuous aerosol & surface retrieval

GRASP (Dubovik et al., 2014)

13 EUM/RSP/VWG/19/1088360, v1 Draft, 31 May 2019

Future Mission EPS-SG: EUMETSAT Polar System - Second Generation

3MI: Instrument Concept

EUMETSAT

3MI NRT Aerosol Retrieval: Application of GRASP

- Continuous solution space;
- Rigorous data combination and use of a priori information;
- Globally unique set of a priori constraints;
- No location specific assumptions;
- Surface retrieved simultaneously;

3MI:

- radiances & polarization (410, 440, 490, 560, 670, 870, 1650, 2103 nm) - 10- 14 viewing directions

240 - 336 measurements

AEROSOL:

- size distribution (~5 bins)
- spectral index of refraction (8 $\underline{\lambda}$)
- sphericity fraction;
- aerosol height

SURFACE:

- BRDF (3 spectrally dependent parameters)
- BPDF (1 or 2 spectrally dependent parameters)

55 = (5 (SD) +16 (ref. ind.) + 1 (nonsp.) + 24 (BRDF) +8 (BPDF) + 1 (height)

EUMETSAT

3MI NRT Aerosol Retrieval: Illustration of GRASP-NRT retrievals from 3MI simulated data

17 EUM/RSP/VWG/19/1088360, v1 Draft, 31 May 2019

EUMETSAT

1.00

3.0

- Simultaneous aerosol / surface retrieval with AERUS-GEO
- Approach according Carrer et al., 2010; 2014
- Daily retrieval for MSG/SEVIRI available in ICARE
- Instantaneous retrieval (up to 96/day) under development
- Planned to be operationally implemented in EUMETSAT for MTG/FCI

Daily AOD at 0.64µm on March 30th, 2010

Capture of aerosol plume from Etna volcano on April 15th, 2010

(Ceamanos et al. 2018)

- Instantaneous retrieval with i-AERUS
 - good estimation of the AOD
 - reveals the diurnal cycle that may be large
 - → comparison to Aeronet and PARASOL (GRASP)

- artefacts : identified limitation in backscattering geometry with the aerosol model (phase function)

20

• Instantaneous retrieval with i-AERUS

Mediterranean basin

Aerosol Product from MSG to MTG

- Instantaneous retrieval with i-AERUS
 - The i-AERUS product is already at a good level of maturity
 - Good information on AOD and its diurnal variation
 - Clear need for improvement identified for :
 - Assessment of aerosol type
 - A better treatment of the surface (especially for ocean)
 - MTG/FCI will provide more spectral information expected to contribute to a better constraint of the retrieval

Summary

- EUMETSAT has a number of operational NRT aerosol products either currently in operations or in development
- The Copernicus Sentinel 3 mission is expected to significantly enhance the suite of available operational aerosol products
- In the future, the EPS-SG 3MI mission, which is dedicated to the measurement of aerosol properties, will provide state of the art operational aerosol products in NRT.