

High-resolution MAIAC Aerosol Retrievals from AHI-8 HIMAWARI

Alexei Lyapustin, NASA GSFC Y. Wang, S. Korkin, F. Zhao

R. Nemani (NASA Ames),

I. Grant, L. Majewski (Australian Bureau of Meteorology)

AC-VC-15, Tokyo, Japan June 12, 2019

MAIAC: Main Features

- 1. Sliding window algorithm store up to 4 days of measurements in memory \rightarrow BRDF;
- 2. Dynamic characterization of SR spectral ratios using MRM
- Detailed surface characterization for each grid cell (spectral BRDF; spatial variation from 500m band; BTcontrasts etc.) → high quality cloud, snow, cloud shadow detection;
- 4. Smoke/Dust Absorbing aerosol Test
- 5. Product suite: CM, Snow Mask, AOD (0.47 and 0.55μ), Aerosol Type, Aerosol Plume Height, spectral surface reflectance (atmospheric correction); Over water – AOD and FMF (fine mode fraction), water-leaving reflectance

MAIAC Aerosol Type (Smoke/Dust)

Lyapustin, A. et al., 2012: Discrimination of biomass burning smoke and clouds in MAIAC algorithm, **ACP**, 12, 9679–9686.

Phys. principles (~OMI) – enhanced shortwave absorption (Red →Blue →DB)

 $R_{\lambda}^{Aer} = R_{\lambda}^{Meas} - R_{\lambda}^{Molec} - R_{\lambda}^{Surf} (\tau^{a}) \quad \begin{array}{c} \text{- proxy of aerosol} \\ \text{reflectance} \end{array}$

- 1) n_i increases $R \rightarrow DB$ for OC (smoke) and dust;
- 2) Multiple scattering, for absorbing aerosols.

Backgr./Smoke/Dust $\delta_{\lambda} = R_{\lambda}^{M} - R_{\lambda}^{T} (\tau_{0.47}^{a} = 0.05)$

Model	Abs.	Size
Backgr.	No	Small
Smoke	Yes	Small
Dust	Yes	Large

New: Aerosol Plume Height

Lyapustin, A., Y. Wang, S. Korkin, R. Kahn and D. Winker, MAIAC Thermal Technique for Smoke Injection Height from MODIS, TGRL, in review.

1. MAIAC agrees to both MISR MINX and CALIOP CALIPSO to about \pm 500m. 2. On average, thermal height is 220-450m lower than lidar and stereoscopic data.

Aerosol Validation (2000-2016)

Lyapustin, A., et al..: MODIS Collection 6 MAIAC Algorithm, AMT, 2018

Bias is regionally clustered. Will be fixed in C6.1.

Global Over Land Inter-Comparison

1×1°, time-resolved

Geostationary Observations

- 1. Geostationary Observations (10-15min):
 - Provide dynamics to study Aerosols, Clouds and their interactions;
 - Diurnal Cycle of Aerosol \rightarrow Air Quality;
 - Dynamics of fires and dust storms;
 - Unprecedented angular resolution (in SZA, AZ) for land BRDF studies and vegetation structure;
 - Improved vegetation phenology and productivity (e.g., timing of northern spring green-up);
 - Improved GPP modeling from diurnally-resolved PAR;
 - Rapid disturbance characterization at scales 500m-1km, etc.
- 2. Adapting MAIAC to AHI-8 HIMAWARI:

Bands: 0.47, 0.51, 0.64, 0.86, 1.61, 2.25, 3.9, ..., 10.4, 11.2, 12.4µm

3. Adapting MAIAC to ABI GOES-16:

Bands: 0.47, 0.64, 0.86, 1.38, 1.61, 2.25, 3.9, ..., 10.4, 11.2, 12.4µm

MAIAC for HIMAWARI AHI-8

(Australian Bureau of Meteorology: controlled burns)

Parked at 142°E; Smoke detection bands: sub-optimal Bands: 0.47, 0.51, 0.64, 0.86, 1.6, 2.3, 3.9, ..., 10.4, 11.2, 12.4μm

Siberian Fire Smoke Over Japan

May 17-23, 2016

Note Pollution Passing Over Korea Overnight

September 20, 2016

High AOD Over Korea

October 13, 2016

Atmospheric Correction and Ocean Color

November 5, 2016

Validation for KORUS-AQ Campaign

MAIAC data are averaged over 11km²

Diurnal Cycle

MAIAC data are averaged over 11km²

0.2

0

0:00

2:24 4:48 7:12 9:36 12:00

Diurnal Cycle

Diurnal Cycle

Evening: Clouds dissipated, AOD agrees with AERONET

Conclusions

- 1. Currently, MAIAC is ~70% adapted for AHI-8 HIMAWARI;
- 2. Correlation with AERONET is good, R²>0.8;
- 3. Reproduce the AERONET diurnal pattern with some exceptions;
- 4. Geostationary helps distinguish local sources vs longrange transport;
- 5. Issues to be addressed:
 - Dust Detection;
 - CM & snow detection optimization;
 - Systematic low biases in both AOD and SR at cSZA<0.4 – either PP RT model (spherical) or BRDF