
EUMETSAT Contributions to the Sentinel Missions for Atmospheric Composition

Rosemary Munro, Bojan Bojkov, Lieven Bydekerke, Hilary Wilson, Dany Provost, Peter Schluessel, Jochen Grandell, Rüdiger Lang, Bertrand Fougnie & Vincenzo Santacesaria

EUMETSAT Mission Planning

EUMETSAT & Copernicus Sensors for Trace Gas Observation

Main types of sensors providing measurements for trace gas retrieval:

- Geostationary UVNS spectrometers: → MTG/UVN (Copernicus Sentinel-4)
- Geostationary hyperspectral IR spectrometers: → MTG/IRS
- Polar-orbiting UVNS spectrometers:
 - → EPS/GOME-2, EPS-SG/UVNS (Copernicus Sentinel-5),
 - \rightarrow Copernicus CO₂ Monitoring mission
 - (high priority candidate mission, not yet approved)
- Polar-orbiting hyperspectral IR spectrometers: →EPS/IASI, EPS-SG/IASI-NG

Cal/Val & End User Products for Trace Gas Missions

Product (Cal/Val & Trace Gas)	Metop GOME-2	MTG-S S4/UVN	EPS-SG S5/UVNS	Copernicus CO ₂ M	Metop IASI	Metop-SG IASI-NG	MTG-S IRS
Radiance	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Irradiance	\checkmark	\checkmark	\checkmark	\checkmark			
O ₃ total column	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark
O ₃ profile (incl. troposphere)	\checkmark		\checkmark		\checkmark	\checkmark	\checkmark
O ₃ tropospheric column	\checkmark	\checkmark					
NO ₂ total column	\checkmark	\checkmark	\checkmark	\checkmark			
NO ₂ tropospheric column	\checkmark	\checkmark	\checkmark	\checkmark			
S0 ₂	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark
SO ₂ Layer Height			\checkmark		\checkmark	\checkmark	
НСНО	\checkmark	\checkmark	\checkmark				
СНОСНО	\checkmark	\checkmark	\checkmark				
BrO	\checkmark		\checkmark				
OCIO			\checkmark				
HNO ₃					\checkmark	\checkmark	
NH ₃					\checkmark	\checkmark	\checkmark
со			\checkmark		\checkmark	\checkmark	\checkmark
CH ₄			\checkmark	\checkmark	\checkmark	\checkmark	
SIF	\checkmark		\checkmark	\checkmark			
CO ₂				\checkmark			
H ₂ 0	\checkmark	\checkmark	\checkmark				
UV Products	\checkmark	\checkmark	\checkmark				
Surface Reflectance	\checkmark	\checkmark	\checkmark				

<u>Cells coloured:</u>

blue indicate products to be produced at EUMETSAT, green indicate products to be produced by the AC SAF, orange indicate products not yet committed but possible. Grey indicate "Not Applicable"

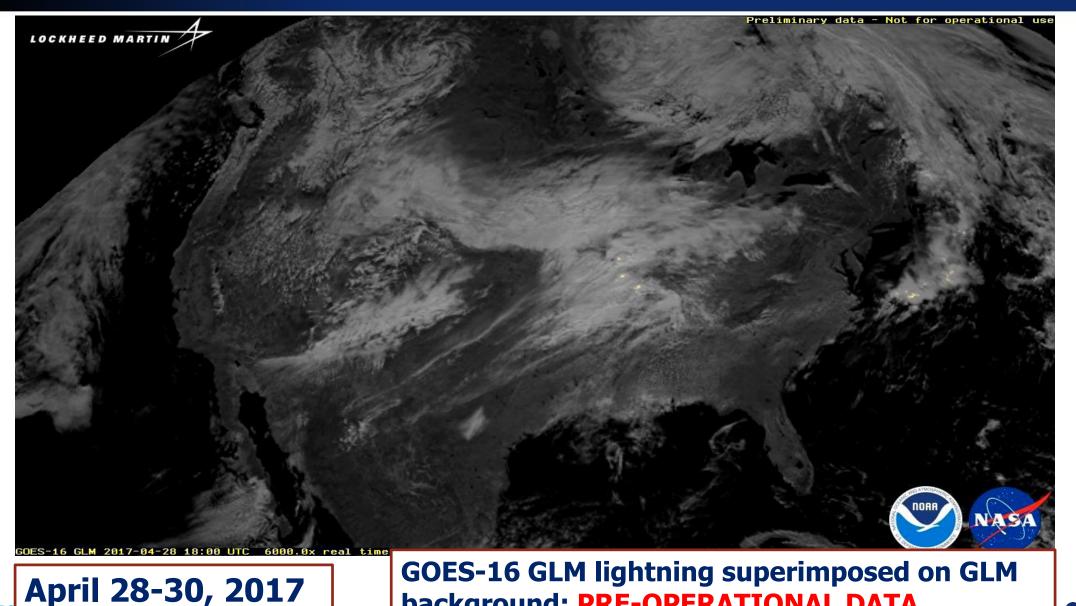
Meteosat Third Generation (MTG) Full Operational Configuration

MTG-I Rapid Scan Service

MTG-S Sounding Service **MTG-I** Full Scan Service

MTG-I Imaging Mission

- Imagery mission implemented by two MTG-I satellites
- Full disc imagery every 10 minutes in 16 bands
 Fast imagery of Europe every 2.5 minutes
- New Lightning Imager (LI)
- Start of operations in 2021
- Operational exploitation: 2021-2042



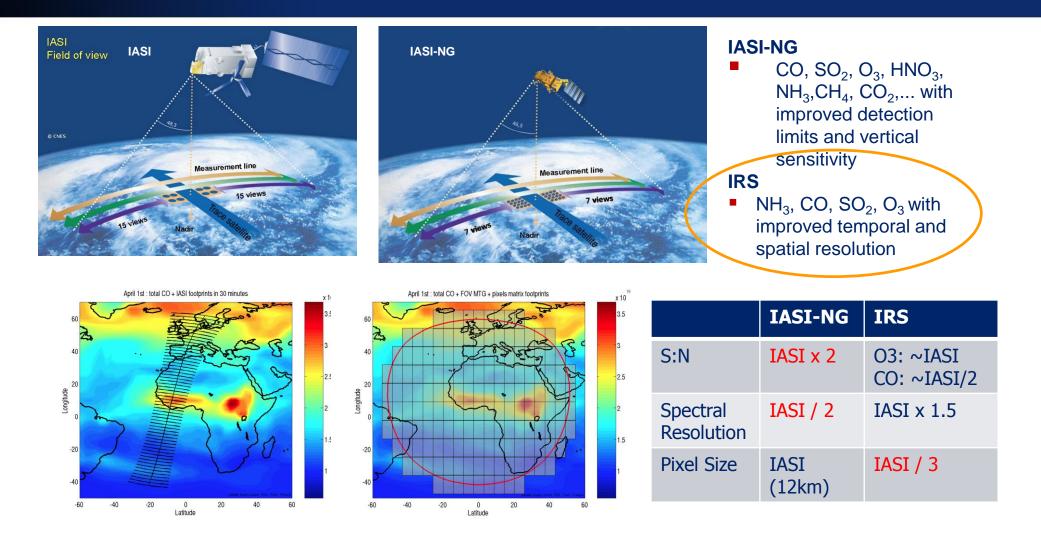
The Flexible Combined Imager Higher Spatial Resolution and More Spectral Channels

courtesy D. Rosenfeld, Univ. Jerusalem

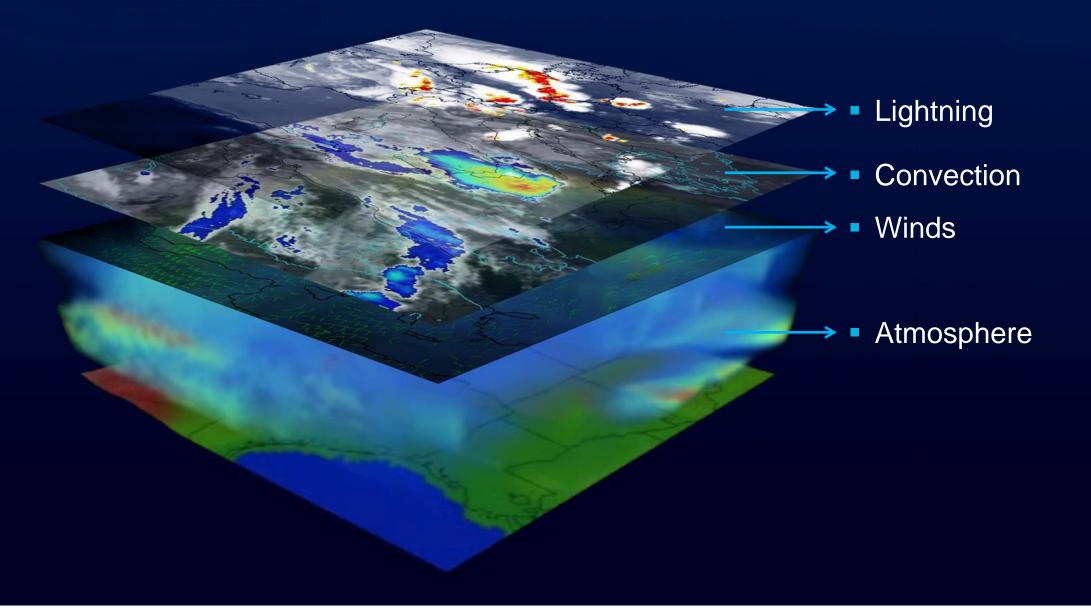
The Lightning Imager Lightning Monitoring for NWC / VSRF / AC (GOES-R example)

background: PRE-OPERATIONAL DATA

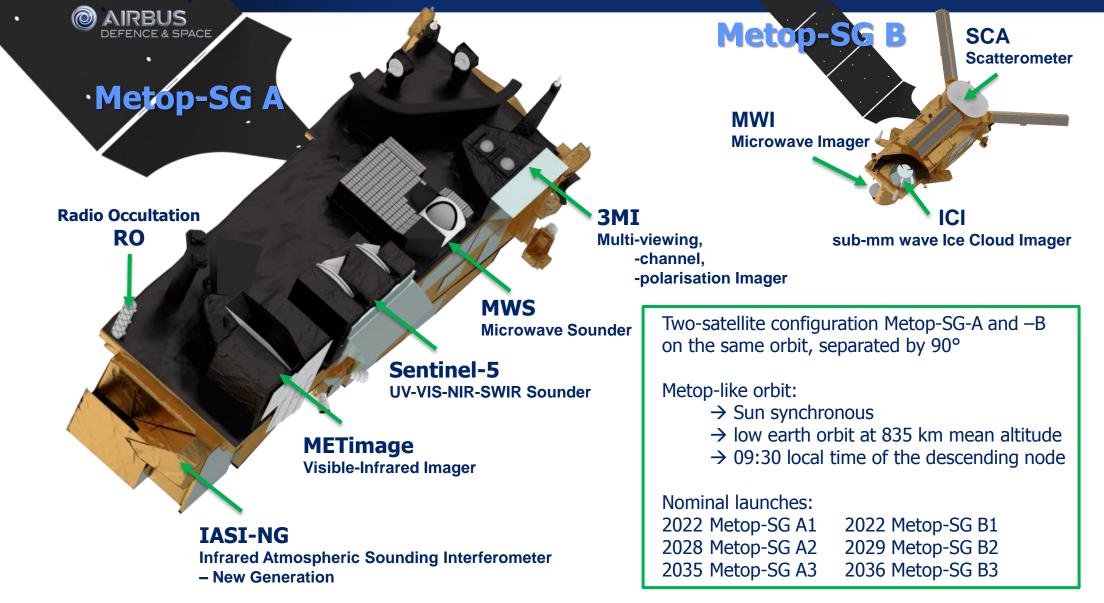
EUMETSAT


MTG-S Sounding Mission

- 3D weather cube: temperature, water vapour, trace gases, every 30 minutes over Europe
- Air quality monitoring and atmospheric chemistry in synergy with Copernicus Sentinel-4 instrument
- Start of operations in 2023
- Operational exploitation: 2023-2042


From IASI to IASI-NG and the IRS

Courtesy ULB/LATMOS


EUMETSAT

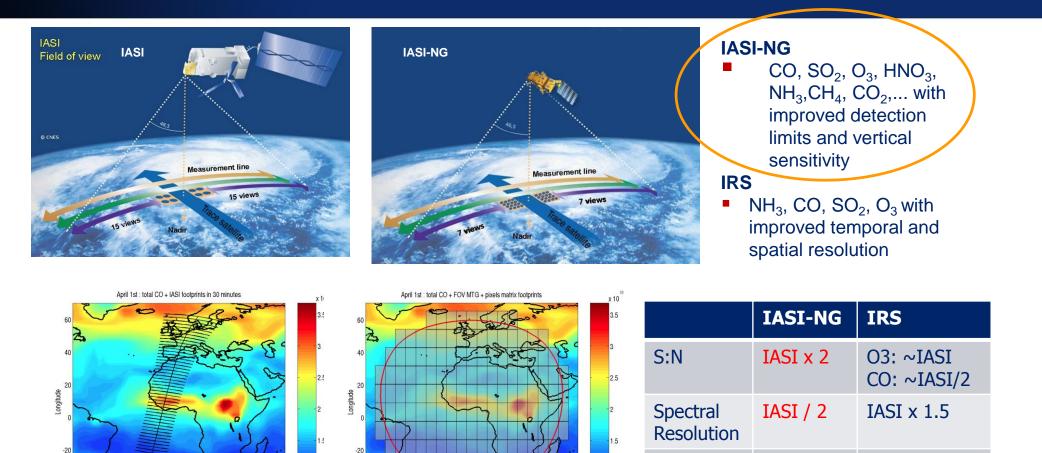
4D Weather Cube with MTG-I and MTG-S

Future Mission EPS-SG: EUMETSAT Polar System - Second Generation

From IASI to IASI-NG and the IRS

40

60


-60

-40

-20

Latitude

20

40

60

20

Pixel Size

Courtesy ULB/LATMOS

IASI (12km)

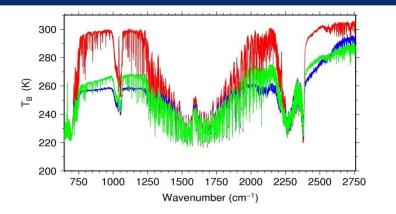
13 EUM/RSP/VWG/19/1088558, v1 Draft, 31 May 2019

-60

-40

-20

0 Latitude


EUMETSAT

IASI / 3

Hyper-spectral Infrared Sounding IASI-NG

Objectives

- Temperature/humidity profile at high vertical resolution
- Clouds, trace gases (CO, SO₂, O₃, HNO₃, NH₃, CH₄, CO₂ ...)
- Sea/land/ice surface temperature
- Aerosols, Volcanic Ash

Breakthrough

- Doubling of radiometric and spectral resolution of IASI for the benefit of weather forecast and atmospheric composition
 - 75% more information in temperature profiling, particularly PBL
 - 30 % more information in water vapour profiling
 - Quantification of trace gases which are currently only detected
 - Vertical resolution of trace gases instead of columnar amounts only

Optical Imaging METimage

Objectives

- Hi-res cloud products, incl. microphysics
- Aerosols
- Polar AMVs
- Vegetation, snow, fire
- Sea/ice/land surface temperature
- Support to sounding missions

Implementation

Development of *METimage* by DLR

Key performances

- 20 channels: 0.443 13.345 μm
- absolute calibration: 5% (short-wave)
 0.5 K (long-wave)
- radiometric sensitivity: SNR 60 500 (short-wave) 0.05 – 0.2 K (long-wave)
- spatial sampling: 500 m cross-track scan

Breakthrough

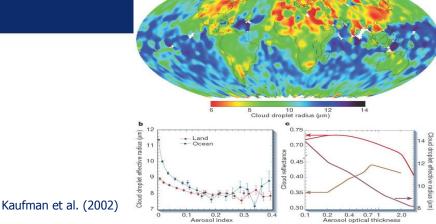
- Many more spectral channels than AVHRR for the benefit of measuring more variables
- Higher spatial resolution (500 m):
 - more complete coverage through greater likelihood to measure surface variables in partly cloud conditions
 - Better radiometric resolution for more accurate quantification of many variables

EUMETSAT

Multi-viewing multi-channel multi-polarisation Imaging

3MI

Objectives of a new mission


- Aerosol optical thickness, particle size, type, height, absorption
- Volcanic Ash
- Cloud phase, height, optical depth
- Surface albedo

Implementation

ESA development

Key performances

- 12 channels: 0.41 2.13 μm
- 3 polarisations: 0°, 60°, -60°
- 14 views
- radiometric bias: 3%
- SNR: 200
- spatial sampling: 4 km
- push-broom scan (2200 km swath)

Breakthrough:

- Enhanced spatial sampling (4 km)
 - Improves separation of cloudy areas
- 12 spectral channels (9 polarised), extending into the UV and SWIR
 - Better aerosol characterisation
 - Higher angular resolution (14 views)
 - Better phase function characterisation

Combining co-locations of VII/Sentinel5/IASI-NG observations with co-registered multiviewing observations (3MI) on 3MI multi-viewing fixed grid.

EPS-SG Platform

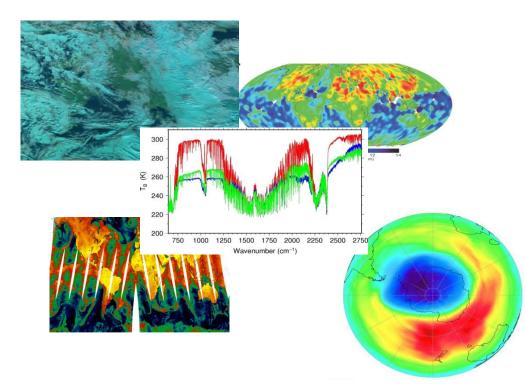
Sentinel-5 UV-Vis-SWIR hyper spectral sounder

IASI-NG IR hyper spectral sounder

METimage Very high spatial resolution, multi channel imager

3MI Multi-viewing, Multi-polarisation, Multi-channel imager Co-location and coregistration EPS-SG hyper-instrument

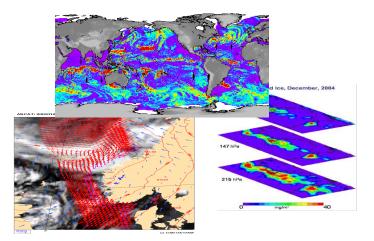
 $0.29 - 15 \mu m$ $0.5 - 7 km^2$ ~ 19000 channels


Initial product: Multi-sensor Aerosol product (MAP)

Synergy of Observation Missions

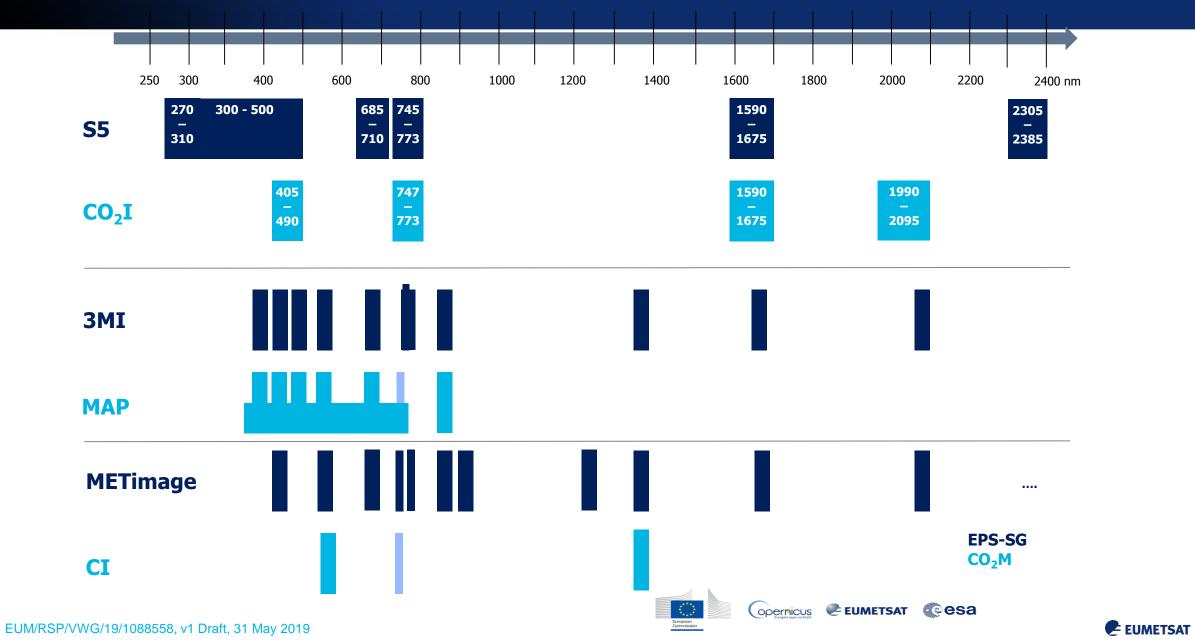
Observation missions are highly complementary

- Co-registration of measurements will allow to optimise the information extraction
- Synergy to be considered in payload distribution of a dual satellite configuration



Essential co-registrations

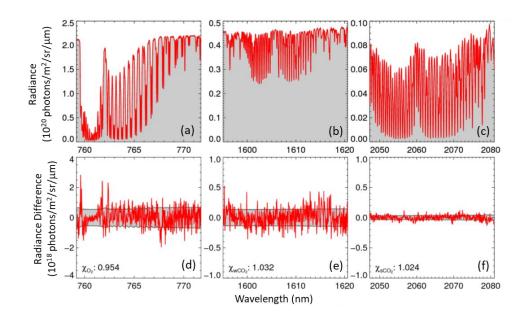
- IASI-NG METimage S5/UVNS
- MWI ICI


Desired co-registrations

- IASI-NG MWS
- METimage 3MI
- IASI-NG S5/UVNS 3MI
- MWI SCA METimage

Spectral coverage: EPS-SG (S5, 3MI, METimage) vs. CO₂M

19


Opportunities for Cross-Calibration (GSICS)

EUMETSAT & Copernicus Reflective Solar Spectrometers

- Metop GOME-2
- MTG-S Sentinel-4
- EPS-SG Sentinel-5
- Future CO₂ monitoring (constellation anticipated so cross-calibration important!)

Activities for Reflective Solar Spectrometers

- Solar Spectrum comparison and reference
- White Paper on Ground-based Characterisation
- Cross-comparison during match-ups (LEO vs LEO Simultaneous Nadir Overpass, Chasing Orbits (Opportunistic Formation Flying, LEO under flights of GEO)
- Cross-comparison at Target Sites (Sahara, Pacific, Ice sheets, Salt pans ...)
- Cross-calibration below 300nm

Credit: Reuter et al. 2017

Common Validation Approach (Trace Gas Products)

3 phases: commissioning, pre-operational, operational/routine

Ground-based observations:

- Networks of stations: NDACC, Pandonia, WOUDC, Eubrewnet, TCCON, AERONET, MPLNET, EARLINET, GALION
- Data Centres/archives: EVDC, AVDC, GAWSIS, ACTRIS
- Instrument types: MAX-DOAS, BREWER, FTIR/FTS, MWR, Spectral UV, Sonde, Lidar, SAOZ, Aircore
- Measurements from instruments on board of other LEO/GEO satellites:
 - OMPS, TROPOMI, GEMS, TEMPO, GF-5 EMI, OCO-2, OCO-3, GOSAT-2, Tansat ...

Cross-comparison/validation among EUMETSAT products:

- GEO/LEO UVNS inter-comparison: GOME-2, Sentinel-5/UVNS and Sentinel-4/UVN
- GEO/LEO IR spectrometers: IASI, IASI-NG and IRS
- UVNS/IR inter-comparison: Sentinel/5/IASI-NG and Sentinel-4/IRS
- Copernicus CO₂M constellation (plus with other GHG missions)
- Dedicated campaigns (if needed, operations only):
 - Ground-based
 - Aircore/Sondes
 - Balloon and/or Airborne campaigns
- □ Model-based validation?
 - Direct assimilation of trace gas products (e.g. CAMS)
 - CAMS re-analysis

- EUMETSAT will operate a number of Sentinel missions and monitor and evolve their products during the operational phase
- Many opportunities for the development of synergistic products with EUMETSAT missions
- Many synergies in (cross-)calibration / validation activities

