

CEOS AC-VC, Tokyo, Jun 10-12, 2019

Overview of GEMS

Jhoon KIM¹, GEMS Science Team, and NIER ¹ Yonsei University, Seoul, Korea

Development of Satellite RS for AC GEMS

Kim et al.(submitted)

GEO-KOMPSAT 2

2A Sat. : AMI	2B Sat. : GEMS,
	GOCI-2

Specification

	GK 1 (COMS)	GK 2A	GK 2B		
Payload	MI	GOCI	AMI	GOCI-2	GEMS	
Channels	5	8	16	13	1000	
Spatial Resolution (km)	1 (Vis) 4 (IR)	0.5 @ Seoul	0.5/1(Vis) 2 (IR)	0.25 @ eq 1 (FD)	7 x 8 (gas) 3.5 x 8 (aerosol)	
Temporal resolution	15 min	1 hour	10 min (FD)	1 hour (FD1/day)	1 hour	
Spatial Coverage	NH / FD	E. Asia	NH / FD	E. Asia / FD	Asia	
Wavelength range	0.6–13 um	412– 860 nm	0.4 – 13 um	375 – 860 nm	300-500 nm	
FWHM	10~20 nm	10~20 nm	10~20 nm	10~20 nm	0.6 nm	
Launch	June 27	^{7th} , 2010	Dec. 2018	Before M	ar. 2020	
Lifetime	7 ye	ears	10 years			
Location	128.	.1 ºE	128.1 °E			

GEMS FLIGHT MODEL

- ✓ Scanning UV-visible Spectrometer
 ✓ Onboard GK-2B
- ✓ Delivered to KARI in 2018
- ✓ Under AIT to GK-2B S/C
- ✓ Vibration Test finished
- ✓ Acoustic Test : last week
- ✓ Separation Shock Test : this week
- ✓ Thermal-Vac : Jul-Aug 2019
- ✓ PSR : Nov., 2019
- ✓ GK-2A launched in Dec., 2018
- Launch : likely in Feb., 2020 (Guiana Kourou)

GEMS E-W Scan Scenario

GEMS BASELINE PRODUCTS (21)

Num	Product	Importance	Min (cm ⁻²)	Max (cm ⁻²)	Nominal (cm ⁻²)	Accuracy	Window (nm)	Spat Resol (km²)@Seoul	SZA (deg)	method
3	TropO₃ StratO₃ TotalO₃	Oxidant Pollutant O ₃ layer	4x10 ¹⁷	2x10 ¹⁸	1x10 ¹⁸	3%(TOz) 5%(Stra) 20(Trop)	300-340	7 x 8	< 70	OE TOMS
4	AOD AI SSA AEH	Air quality Climate Public Health	0 (AOD)	5 (AOD)	0.2 (AOD)	20% or 0.1@ 400nm	300-500	3.5 x 8	< 70	$\begin{matrix} \text{Multi-}\lambda \\ \text{O}_2\text{O}_2 \\ \text{OE} \end{matrix}$
1	нсно	VOC	1x10 ¹⁵	3x10 ¹⁶	3x10 ¹⁵	1x10 ¹⁶ cm ⁻²	328.5- 356.5	7 x 8 x 4 pixels	< 50	DF
1	сносно	proxy	1x10 ¹⁴	1x10 ¹⁵	5x1014	1x10 ¹⁵ cm ⁻²	435-461	7 x 8 x 4 pixels	< 50	DF
2	TropNO ₂ StratNO ₂	O ₃ precursor	3x10 ¹³	1x10 ¹⁷	1x10 ¹⁴	1x10 ¹⁵ cm ⁻²	425-450	7 x 8 x 2 pixels	< 70	DOAS
1	SO2	Aerosol precursor Volcano	6x10 ⁸	1x10 ¹⁷	6x10 ¹⁴	1x10 ¹⁶ cm ⁻²	310-330 340	7 x 8 x 4 pixels x 3 hours	< 50	DOAS PCA
4	UVI VitD UVI DNA UVI Plant UVI	Public health	0	12 62 25 48	6.8 33 mWm ⁻² 12 mWm ⁻² 25 mWm ⁻²	20%	300-360	7 x 8	< 70	Multi-λ RTM
2	Surface Prop. (LER, BRDF)	Environment	0	1	-	20%	300-500	3.5 x 8	< 70	Multi-λ
3	ECF CCP CRF	Retrieval Climate	0 (COD)	50 (COD)	17 (COD)	20%	300-500	7 x 8	< 70	6 O ₂ O ₂ <i>RRS</i>

GEMS L2 Algorithm Test with TROPOMI L1b

GEMS L2 Algorithm Test with TROPOMI L1b

Hanlim Lee (<u>hllee@pknu.ac.kr</u>)

Rokjin Park (rjpark@snu.ac.kr)

Algorithm Test with GEOTASO

- NO₂: Emission from automobile detected, showing freeway structure. Increase in the late afternoon.
- SO₂: Point sources in west coast around power plants and steel mill captured well with the GeoTASO retrieval.
- HCHO : Many hot spots identified at the south of Seoul Metropolitan City

Version of L1B data: V2y

Scott Janz, Jay Al-Saadi

- Periods : 2005.01.01 2005.12.31
- Retrieved products were validated with ground-based measurement data or OMI Level 2 operational products.

[Intercomparison results of GEMS algorithm using OMI L1b data V003]

	Corr.(R)	Slope	Intercept	RMSE	References	Credits
O ₃ (Total)	0.97	1.00	2 DU	2.53 DU	Brewer Spectro- photometer	Jae H. Kim
O ₃ (Trop)	0.93	1.07	-3.14 DU	5.14 DU	Ozonesonde	
НСНО	0.92	1.01	3.3 x 10 ¹⁴ molec/cm ²	3.14 x 10 ¹⁵ molec/cm ²	OMI Products	Rokjin J. Park
NO ₂	0.87	1.34	-2.29 x 10 ¹⁵ molec/cm ²	2.66 x 10 ¹⁵ molec/cm ²	OMI Products	Hanlim Loo
SO ₂	0.75	0.72	0.15 DU	0.43 DU	OMI Products	
ECF	0.96	0.96	0.007	0.026	OMI Products	Yong-Sang
CCP (ECF>0.2)	0.94	0.99	-28.45 hPa	68.11 hPa	OMI Products	Choi
Surface Ref.	0.76	-	-	0.033	MODIS BRDF	Kwon-Ho Lee
AOD	0.85	0.83	0.16	0.27	AERONET	lboon Kim
UV Index	0.99	1.02	-0.07	0.54	OMI Products	

GEMS Validation Network

at Yonsei University Sun photometer at Yonsei University

GEMS Validation Network

Network Name	Network Full-name	Instrument	Observation	Reference, (homepage)	GEMS Product	YSU, Seoul
WOUDC	World Ozone and Ultraviolet	Dobson spectrophotometer	TO ₃ , O ₃ umkehr	Fieldtov et al. (1000)	TO ₃ , O ₃ profile	\checkmark
	Radiation Data Centre	Brewer spectrophotometer	TO ₃ , O ₃ umkehr, AOD, SO ₂ total column density, UV irradiance, UV index	(https://woudc.org)	TO ₃ , SO ₂ , AOD, UV index	\checkmark
Pandora network	Pandora network	Pandora spectrometer	Total columns of O ₃ , NO ₂ , HCHO, their vertical profiles	Herman et al. (2009), (https://pandora.gsfc.nasa.gov, http://pandonia.net)	TO3, NO2, HCHO	\checkmark
EANET	Acid Deposition Monitoring Network in East Asia	Wet and dry sampler	Wet deposition (sulfate), dry deposition (concentrations of SO ₂ , NO ₂ , and O ₃)	Sugimoto and Uno (2009), (http://www.eanet.asia)	SO ₂ , NO ₂ , Tropospheric O ₃	
MAX-DOAS network	Multi-Axis Differential Optical Absorption Spectroscopy network	MAX-DOAS	Tropospheric NO ₂ , AOD	Kanaya et al. (2014) (https://ebcrpa.jamstec.go.jp/maxdoas hp)	Tropospheric NO ₂ , AOD	\checkmark
AD-NET	Asian dust and aerosol LIDAR observation network		Extinction coefficients of attenuated backscatter, aerosol, dust, spherical particle	Sugimoto and Uno (2001), (http://www-lidar.nies.go.jp/AD-Net)		
KALION	Korea aerosol LIDAR observation network	LIDAR	Attenuated backscatter coefficient, aerosol extinction coefficient	Kim et al. (2015), (http://www.kalion.kr)	AOD, AEH	
MPLNET	NASA Micro-Pulse LIDAR Network		Cloud heights, thin cloud extinction optical depths, cloud phase, aerosol height*, aerosol depolarization ratio profiles*	Welton et al. (2001) (https://mplnet.gsfc.nasa.gov)		
AERONET	Aerosol Robotic Network	Sun photometer	Size distribution, refractive index, phase	Holben et al. (1998), (https://aeronet.gsfc.nasa.gov)	AOD, SSA	\checkmark
SONET	Sun–sky Radiometer Observation Network	Sun photometer	exponent, fine mode fraction, AOD, SSA	Li et al. (2018), (https://aeronet.gsfc.nasa.gov)		
SKYNET	Sky radiometer network	Sky radiometer	AOD, SSA	Takamura (2004), (https://www.skynet-isdc.org)		\checkmark
SPARTAN	Surface PARTiculate mAtter Network	Air Photon	Mass concentration; Chemical components (e.g. BC, SO4 ²⁻ , NO3 ⁻ . NH4 ^{+'}	Snider et al. (2015), (https://www.spartan-network.org/)	AOD, SSA, AI,	\checkmark
GAW WDCA	Global Atmosphere Watch World Data Centre for Aerosols	Aerosol sampler	Aerosol particle number concentration, size distribution, light scattering coefficient, AOD	WMO/GAW report No. 153 (2003), (https://www.gaw-wdca.org)	AOD	
Ceilometer network	Ceilometer network	Lidar	Cloud bottom height, cloud fraction	Münkel et al. (2010) (https://data.kma. go.kr/data/)	Cloud fraction	\checkmark

*Only available at AERONET observation times

+GOES-R/S ABI

A Day in the Life of the Constellation (May 31)

Courtesy, Ben Veihelmann (graphic) & Jay Al-Saadi (data)

1 hour

S/C AIT for GK-2B

Oct 2019 - Mar 2020

UV-Vis 300-500 nm

O₃, NO₂, SO₂, HCHO, AOD, AI, AEH

3.5 km N/S x 8 km E/W

7 km N/S x 8 km E/W @38N (gas), 3.5 km N/S x 8 km E/W @38N (aerosol)

+ AMI

+ MTG-I/S

SUMMARY

- GEMS is to be launched no later than March 2020, to form GEO AQ Constellation with TEMPO and Sentinel-4 in early 2020s.
- GEMS science algorithms Ver. 1 is to be delivered to GEMS Ground Station, ESC by the end of June. These algorithms have been tested with L1b data from OMI, TROPOMI, GEOTASO, and simulated radiance spectra, and validated.
- Overall, TROPOMI L2 operational algorithm and GEMS algorithm captured high concentration episodes well. Both products showed good agreement in spatial distribution for Total Ozone, NO₂, SO₂, HCHO, UV aerosol index. However, absolute values between the two products showed slight differences possibly due to the differences in algorithms, spectroscopic data, surface albedo and spectral calibration.
- Machine learning algorithm also showed possibility to estimate surface concentration from columnar measurements of GEMS for aerosols. Similar work is under the development for trace gases by NIER.
- GEO AQ data can be applied to diverse areas including public health, crop yield studies, climate changes, in addition to air quality monitoring.

GEMS

