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Global OH monitoring has relied on the methylchloroform proxy

[OH] minor terms= - +MCF
MCF

dm k m
dt

Holmes et al. [2013]

But errors on this proxy are large and growing, and assessing OH trends is highly uncertain
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Use methane as a proxy instead:

Distribution of tropospheric methane + OH loss rate (GEOS-Chem model)

Loss pattern has broad meridional and seasonal signatures, 
distinct from emission signatures in inversions of methane satellite data 

Zhang et al. [2018]

SWIR and TIR
satellite observations
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Optimize with methane observations from space



Inversion of 2010-2015 GOSAT methane data shows promise
Analytical inversion using GEOS-Chem forward model 
with joint Bayesian optimization of

- methane emissions (4ox5o)
- 2010-2015 trends (4ox5o)
- annual global OH concentration

4ox5o correction to
EDGAR+WetCHARTs
inventories

Emission trends:
tropical increases

avker sensitivity 0.5

DOFS
=198

DOFS
=13

OH trend: -2%
contributes to methane increase

Maasakkers et al. [2018]



What can we achieve with the next generation of satellite instruments?
Conduct OSSE to assess potential for using methane from space as proxy for global OH

Zhang et al. [2018]

Jointly optimize methane emissions (4ox5o grid) 
and global/hemispheric OH

• SWIR: TROPOMI, global daily, 3% success rate, 0.6% precision
• TIR: AIRS/CrIS, global 2x/day, 60% success rate, 2% precision 

12 different OH
distributions
(ACCMIP ensemble)



Ability of satellite methane data to constrain OH and its trend

• SWIR is essential for retrieving global distribution of emissions
• TIR enables better separation of global emissions and OH
• Global emissions and OH concentrations, and their trend, can be separately retrieved

RMSE at 4ox5o

Zhang et al. [2018]
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Retrieving point source emission rates
from high-resolution remote sensing of instantaneous methane plumes

AVIRIS-NG over Four Corners
(Frankenberg et al. 2016)

GHGSat-D (50x50 m2 pixels)
over Lom Pangar Dam, Cameroon

The picture can't be displayed.

WRF large-eddy simulation
at 50x50 m2 resolution

Varon et al. [2018]



Methods for inferring point source rates Q
from instantaneous observation of column plume enhancements ΔΩ

1. Gaussian plume inversion
2
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Fails for plumes < 10 km 
due to non-Gaussian behavior

2. Source pixel mass balance
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Fails for pixels < 1 km because
eddy flow dominates ventilation 

3. Cross-sectional flux
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4. Integrated mass enhancement (IME)
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Both methods require estimates of 
plume size L and effective wind speed Ueff



Define plume size L for cross-sectional flux and IME methods
Pattern recognition algorithm excluding pixels with signal/noise <1

Varon et al. [2018]

• Axis of plume defines wind direction for cross-sectional flux method;
• Area A of plume defines plume size L = √A for IME method



Relating effective wind speed to the local 10-m wind speed

In IME method, the plume observations contain some info on wind speed; 
makes method less sensitive to wind speed error

Varon et al. [2018]

Cross-sectional flux method                                        IME method           

Ueff = 1.49U10

1:1

Ueff = 0.9 logU10 + 0.6  

1:1



What to do in absence of local wind speed data? 
Get estimate from operational meteorological data base, but incur representation error
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Evaluation of GEOS-FP 10-m winds

3-hour mean winds
1:1 line
RMA regression line

Illustrate with comparison of global GEOS-FP data to 5-min US airport data

Error standard deviation:
2 m s-1 for 5-min averaging time
1..3 m s-1 for 1-h averaging time

Low wind speeds have large relative error
Varon et al. [2018]



Testing the methods with independent set of LES plumes
Ability to retrieve “true” source rate Q

IME method

x-sectional flux method

Varon et al. [2018]

Method

Instrument precision If no local wind 
data1% 3% 5%

IME 0.07 t h-1 + 5% 0.13 t h-1 + 7% 0.17 t h-1 + 12% 15-50%

x-sectional flux 0.07 t h-1 + 8% 0.18 t h-1 + 8% 0.26 t h-1 + 12% 30-65%

• IME method better than x-sectional flux method
• Sources > 0.5 t h-1 (75% of US GHGRP) can be usefully retrieved
• Lack of local wind data can dominate error at low winds

Summary of GHGSat precision in retrieving point source rates Q (50x50 m2 pixels)

σ =1% σ =3% σ =5%

7→ 2 m s-1





Precision of the methods for retrieving point source rates

Method

Instrument precision If no local 

wind data1% 3% 5%

IME 0.07 t h-1 + 5% 0.13 t h-1 + 7% 0.17 t h-1 + 12% 15-50%

x-sectional flux 0.07 t h-1 + 8% 0.18 t h-1 + 8% 0.26 t h-1 + 12% 30-65%

• Absolute precision allows detection of sources greater than 0.5 t h-1 (4 kt year-1), which 
contribute more than 75% of US GHGRP sources

• Low winds are good for source detection but not for source quantification
• IME method is better than x-sectional flux method, esp. in absence of local wind data
Next steps:

• Include inhomogeneous noise in the OSSE
• Work with GHGSat airborne simulator, other aircraft observations

GHGSat observations for 50x50 m2 pixels with 1-5% instrument precision

Varon et al. [2018]



Assessing the effect of errors in global OH distribution

• Error in OH distribution can cause 3-7% systematic error in retrieving global OH, 
but error on retrieving OH trends is much less (previous slide)

OSSEs with 12 different “true” OH distributions from ACCMIP ensemble

Zhang et al. [2018]


