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« China contributes
10% = 4% of the
current global
radiative forcing.

« CO2:0.16 = 0.02
W/m?

« CH4:0.13£0.05
W/m? (includes
effects on ozone
and water vapour

e Sulfates: -0.11 =
0.05 W/m? (from
SO,)

How will these change
In the future?
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Deteriorating air quality in China such as the
“Airpocalypse” in Harbin has led to ~500,000

premature deaths/yr (Chen et al, Lancet 2014)

prompting a “war on air pollution” from
government officials.

China’s AQ mitigation (12t 5-year plan) effort
has mainly centered on reducing, displacing,
relocating, and scrubbing pollutant emissions

from coal-based electrical power (Karplus et al,

2015; Nam et al, 2013).

AQ improvements could lock in commitments
to coal-power generation and a high carbon
pathway.

Director of the Development Research Center
(DRC) of China’s State Council energy
objectives to show a strong shift towards
natural gas and renewables within a decade.
(Sheehan et al, 2014)
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GLOBAL SOURCES OF
LOCAL POLLUTION

An Assessment of Long-Range Transport of Key Air Pollutants
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Based upon a multi-constituent
satellite data assimilation/inversion
system (TES, MOPITT, MLS, OMI),
Miyazaki et al, 2017 showed that
China dramatically increased NOx
emissions until turning a corner in
2011.

NOx emission trend: 2005—- 2010
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In China, the sensitivity of
global methane loss rates
to precursor emissions
varies by a factor of 2
between 20N and 45N for
NOx and a by a factor of 7
between 120E and 90E for
CO.

Walker and Bowman, in Rev.

For RCPG6, total CH4 RF in Beijing and
Shanghai is dominated by CO emissions
whereas Pearl River Delta and Sichuan
Basin are largely balanced.

CH4 RF is driven by
the balance between
the magnitude of CO
and NOx emissions
trends and the spatially
dependent sensitivity




INDONESIA FIRES CONCENTRATED IN SUMATRA, KALIMANTAN AND PAPUA
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Surface Observations Carbon Cycle Models Inversion System

Anthropogenic
emissions Atmospheric transport
and chemistry model

Terrestrial exchange

Inverse Model
Ocean exchange

GOSAT/OCO-2 SIF, Jason
SST, nightlights, etc.

Posterior Carbon Fluxes

Attribution

0CO-2 CO2,
GOSAT CO2 and CH4,
MOPITT CO

The NASA Carbon Monitoring System Flux (CMS-Flux) attributes
atmospheric carbon variability to spatially resolved fluxes driven by
data-constrained process models across the global carbon cycle.
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“Top-down” emissions constrained by MOPITT CO

show elevated biomass burning in Sumatra and

Kalimantan. CO:CO2 calculated from Stockwell et

al, ACP (2016) (see E. Putra GC21C-1107).

CO2 fluxes constrained from OCO-2 are centered in

S. Kalimantan.

BB CO2 similar to 0.5 PgC in Yin et al, 2016 (GRL)
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Contribution of Top Emitters to CO2 growth rate
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The Indonesian region was the 2"9 highest contributor (0.45 ppm)
in total flux to the record CO2 growth rate in 2015.

But, Brazil was almost as important.
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Silva and Arellano, submitted show ratios of |

the variability in CO, NO,, and CO, show

distinct patterns relating to local combustion

Processes.

Reuters et al, 2014 showed that trends
Between NO, and CO, are diverging

Trend (% yr1)

Silva and Arellano, submitted
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key need for COP21 is how

fossil fuel emissions are
changing.

FF trend amplitude and
variability leads to time-to-
detection between 3 to >10
years.

However, natural carbon
variability increases time-to-
detection (factor 1.2 to >3)

Carbon feedbacks (carbon-
concentration and carbon
climate) contribute their own
trend.

Both are important.

years needed for Total trend detection

Trend in TOT (kgC m~2) yr—!
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Bowman et al, Atm.Env. 2013

0CO-2, 0CO-3, GOSAT I,
MicroCarb, Sent.7 (?), TanSat, etc.

GeoCarb
Geo-CAPE, TEMPO

G3E? (5™
Sentinel-4 | {é

2?7
GEMS,GMAP-Asia, FY-4

Biomass?

LEO:

IASI+GOME-2, AIRS+OMI, CrIS+OMPS could provide UV+IR ozone products for more than a decade.
Combined UV+IR ozone products from GEO-UVN and GEO-TIR aboard Sentinel 4 (Ingmann et al, 2012 Atm.
Env.)

Sentinel 5p (TROPOMI) will provide column CO and CH4.

OCO-2+AIRS, GOSAT Il (IR+NIR) could provide vertical discrimination.

TEMPO, Sentinel-4, and GEMS, would provide high spatio-temporal air quality information.
GeoCarb and G3E could provide geo-carbon information.
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- Conclusion

* Climate mitigation requires an observation system of both
long and short-lived climate pollutants.

* AQ mitigation in developing countries will impact the near-
term trajectory of carbon emissions.
— The co-evolution of CO2, NO2, CO, and particulates can provide
insight
* Climate variability and feedbacks can coherently amplify
AQ and carbon distributions
— "Extreme” events may hinder policy objectives
— Trend detection of AQ and carbon must account for natural
variability
* |ntegrating AQ and carbon constellations will provide an
unprecedented capability
— Need quantitative analysis of constellation(s), e.g., OSSEs.
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Observations of
composition typically used
for the study of air quality
contain information
regarding local energy use.

These have the potential to
complement analyses of
CO,, improving our
process-based
understanding of emissions.
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* Climate change mitigation requires attribution of climate forcing to
spatial scales at which mitigation occurs.
— Top 10% of emissions account for the majority of net CH4 RF.
— Expansion of emissions in Southeast Asia will have a proportionally larger
impact because of efficient ozone and CH4 RF export.
 (CO2 growth rate mitigation requires attribution of forcing and
feedbacks at the spatial scales on which they occur.

— The tropics released 2.4 = 0.34 Gt more carbon into the atmosphere in 2015
than in 2011 accounting for 78.7% of the global total 3.0 GtC NBE difference,
and 88% of the atmospheric CO2 growth rate differences.

— While tropical continental contributions were roughly the same, the

dominant carbon processes were different: S. America (GPP), Africa (Resp),
and Asia (Fire)

— Fluxes associated with climate “extremes” were the dominant drivers of the
tropical fluxes.
A framework common to both “emergent” constraints and verifiable
predictions of climate forcing provides a basis for linking
observations and models within an assimilation paradigm.



~W¥asa The epicenter of the -

The 2015 rivals the 1997-1998
ENSO (ENSO 3.4 index).
ENSO lead to dry and warm

forcing patterns centered over
Indonesia.

1985 1990 1995 2000 2005 2010 2015

High Resolution Images can be found at:
http://www.cpc.ncep.noaa.gov/products/precip/CWIink/ENSO/ENSO-Global-Impacts/




CH4 emissions RF is driven
primarily in the Middle East

And in Northern India
(Gangetic plain)

RF CH4 emissions

Walker and Bowman, in Rev.

RF total 0.1

0.05

-0.05

-0.1
RF CH4 emissions+chemistry
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Walker and Bowman, in Rev.

The top 10% of positive

equivalent emissions (egem)
account for 50% of the total

positive eqgem. The top 10% of

negative egem account for 60%
of the total negative egem

CO, and VOC

RF CH4 from NOx
can be converted to an equivalent

emission of RF CHA4.

CH4 direct emissions drive mid-

century RF but NOx emissions
drive end-of-century RF
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2015 had the highest atmospheric growth record in the Mauna Loa
record, beating out the 1998 growth rate.

Growth rate was 50% higher than the previous year but
anthropogenic emissions were roughly the same.

What were the spatial drivers of this growth rate? How are they

related to climate forcing?
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On Oct. 24, 2016 Indonesian President Joko “Jokowi” Widodo signed the Paris Agreement
into law.

On Now. 4, 2016 the landmark Paris Agreement for carbon mitigation was put into effect.

According to Indonesia’s official BAU, the country’s emissions level is expected to
increase from 1,805 MtCO,e/year in 2020 to 2,885 MtCO,e/year in 2030. Indonesia’s
pledge corresponds to absolute emission levels of 1,335 MtCO,e/year unconditionally
by 2020, 2,050 MtCO.,e/year unconditionally by 2030, and 1,700 MtCO.e/year
conditionally by 2030. http://climateactiontracker.org/countries/indonesia/2016.html
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Centered on Kalimantan, GRACE gravity (O) black:GRACE LWT(Aug+Sep)
data shows a liquid water equivalent red: GOME SIF(Oct);dashed: mean value
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