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Total	RF	from	China

Li et al, 2016, Nature

• China contributes 
10% ± 4% of the 
current global 
radiative forcing. 

• CO2: 0.16 ± 0.02 
W/m2

• CH4: 0.13 ± 0.05 
W/m2 (includes 
effects on ozone 
and water vapour

• Sulfates: −0.11 ±
0.05 W/m2 (from 
SO2)  

How will these change
In the future?



The	ties	that	bind:	air	quality	and	carbon
Deteriorating air quality in China such as the 
“Airpocalypse”  in Harbin has led to ~500,000 
premature deaths/yr (Chen et al, Lancet 2014) 
prompting a “war on air pollution” from 
government officials.  

How will changes in air quality mitigation 
impact carbon emissions?

China’s AQ mitigation (12th 5-year plan) effort 
has mainly centered on reducing, displacing, 
relocating, and scrubbing pollutant emissions 
from coal-based electrical power (Karplus et al, 
2015; Nam et al, 2013). 

AQ improvements could lock in commitments 
to coal-power generation and a high carbon 
pathway. 

Director of the Development Research Center 
(DRC) of China’s State Council energy 
objectives to show a strong shift towards 
natural gas and renewables within a decade. 
(Sheehan et al, 2014)
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AQ/Carbon co-evolution

Q1: Business as usual (BAU)
Q2: AQ-only (CO2 lock-in?)
Q3: AQ/Carbon (renewables)
Q4: Carbon-only



Supporting	mitigation	policies

How can we develop science-
based mitigation policies and 
monitor their effectiveness?
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mates improve on forest carbon stock estimates reported pre-
viously (8, 13–15, 17, 18, 25) by providing a traceable and sys-
tematic approach to geographically locate the stock estimates for
further monitoring and verification. The forest definitions chosen
here using tree cover thresholds can readily change the estimates
of total carbon and area-weighted carbon densities at national
and regional scales.

Uncertainty Analysis. We assess the accuracy of the biomass car-
bon estimates by calculating the error as the difference between
the true mean biomass value (bootstrapped samples of ground
and Lidar-estimated AGB) and the predicted biomass value
(mapped at 1-km grid cell resolution) and propagating these
errors through the spatial modeling process (SI Materials and
Methods). Errors in the distribution of forest aboveground bio-
mass can be random or systematic in nature and can include the
following: (i) observation errors associated with the uncertainty in
estimates of Lorey’s height from GLAS Lidar, errors associated
with estimating AGB derived from GLAS Lidar height, and
errors in estimating BGB from AGB (27); (ii) sampling errors
associated with the spatial variability of AGB within a 1-km pixel
and the representativeness and size of inventory plots and GLAS
pixels over the landscape (29); and (iii) prediction errors associ-
ated with spatial analysis and mapping of AGB from significant

contributions from satellite imagery (Fig. S3) (14, 30). We
combined these three types of errors (SI Materials and Methods)
to quantify the uncertainty of total biomass carbon stock as the
95% bootstrapped confidence interval at the 1-km pixel level
(Fig. 3B). The overall uncertainty in mapping AGB at the pixel
scale averaged over all continental regions is estimated at ±30%,
but it is not uniform across regions or AGB ranges (±6% to
±53%) and depends on regional variations of forests, quality of
remote sensing imagery, and sampling size and distribution of
available ground and GLAS data. However, when averaged over
all AGB ranges, regional uncertainties were comparable: ±27%
over Latin America, ±32% over Africa, and ±33% over Asia
(Fig. S4). The uncertainty in total carbon stock at the pixel scale
averaged ±38% over all three continents after errors associated
with BGB estimation were included in the analysis.
We computed the uncertainty around carbon estimates at

national and regional scales by propagating errors associated
with observation, including the errors associated with BGB
estimates, sampling, and prediction. The uncertainty of carbon
stock estimates at the national level was calculated as the square
root of the sum of per-pixel errors for all pixels within the na-
tional boundary. This process reduced the relative errors as
sample area increased. The national estimates were found to be
constrained to within ±1% of the total carbon stock obtained

Fig. 3. Benchmark map of carbon stock and uncertainty. (A) Forest carbon stock defined as 50% of AGB + BGB is mapped at 1-km pixel resolution and
colored on the basis of a 12–25 Mg C ha−1 range to show the spatial patterns. (B) The uncertainty of the benchmark map is estimated using error propagation
through a spatial modeling approach. The uncertainty is given in terms of plus or minus percent and it includes all errors associated with prediction from
spatial modeling, estimation of Lorey’s height from GLAS, estimation of AGB from Lorey’s height, errors from pixel level variations, and errors associated with
BGB estimation (SI Materials and Methods).

4 of 6 | www.pnas.org/cgi/doi/10.1073/pnas.1019576108 Saatchi et al.



The	turning	point	NOx	emissions

Miyazaki et al, 2017, ACP

Based upon a multi-constituent 
satellite data assimilation/inversion 
system (TES, MOPITT, MLS, OMI), 
Miyazaki et al, 2017 showed that 
China dramatically increased NOx 
emissions until turning a corner in 
2011. 



Location	matters:	spatial	gradients	of	CH4	forcing

In China, the sensitivity of 
global methane loss rates 
to precursor emissions 
varies by a factor of 2 
between 20N and 45N for 
NOx and a by a factor of 7 
between 120E and 90E for 
CO.

CH4 RF is driven by 
the balance between 
the magnitude of CO 
and NOx emissions 
trends and the spatially 
dependent sensitivity

For RCP6, total CH4 RF in Beijing and
Shanghai is dominated by CO emissions
whereas Pearl River Delta and Sichuan 
Basin are largely balanced. 

Walker and Bowman, in Rev.



Indonesia	Fires

NASA Earth Observatory



Atmospheric	signature	of	Indonesian	
composition



Surface	Observations Atmospheric		Observations

CMS-Flux	Framework

Posterior	Carbon	Fluxes	
(CO2,	CH4,	CO)

GOSAT/OCO-2	SIF,	Jason	
SST,	nightlights,	etc.

OCO-2	CO2,	
GOSAT	CO2	and	CH4,	
MOPITT	CO

Carbon	Cycle	Models

Atmospheric	transport	
and	chemistry	model

Inverse	Model

Inversion	System

Attribution
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NASA	Carbon	Monitoring	System	Flux
(CMS-Flux)

The NASA Carbon Monitoring System Flux (CMS-Flux) attributes 
atmospheric carbon variability to spatially resolved fluxes driven by 
data-constrained process models across the global carbon cycle. 



CMS-Flux	Carbon	Fluxes

“Top-down” emissions constrained by MOPITT CO 
show elevated biomass burning in Sumatra and 
Kalimantan. CO:CO2 calculated from Stockwell et 
al, ACP (2016) (see E. Putra GC21C-1107).

CO2 fluxes constrained from OCO-2 are centered in 
S. Kalimantan.  

BB CO2 similar to 0.5 PgC in Yin et al, 2016 (GRL)

CMS-Flux SON 2015
BB CO2 = 0.4 ± 0.03  GtC
NBE CO2 = 0.3 ± 0.02 GtC
NEP = 0.1 ± 0.04  GtC

Field et al, 2016 (PN
AS)

Aug Sep

Oct Nov



Implications	for	2015	CO2	growth	rate
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The Indonesian region was the 2nd highest contributor (0.45 ppm) 
in total flux to the record CO2 growth rate in 2015.

But, Brazil was almost as important. 



Silva and Arellano, submitted show ratios of 
the variability in CO, NO2, and CO2 show 
distinct patterns relating to local combustion 
processes.  

(Silva and Arellano, submitted)

Linking	CO2,	CO,	and	NO2

Reuters et al, 2014 showed that trends
Between NOx and CO2 are diverging

Silva and Arellano, submitted

Reuters et al, 2014 Nat. Geo



The	times	they	are	a-changing
A key need for COP21 is how 
fossil fuel emissions are 
changing. 

FF trend amplitude and 
variability leads to time-to-
detection between 3 to >10 
years.

However, natural carbon 
variability increases time-to-
detection (factor 1.2 to >3)

Carbon feedbacks (carbon-
concentration and carbon 
climate) contribute their own 
trend.
Both are important. 

Yin and Bowman



Toward	an	Air	Quality-Carbon-Climate		Constellation

• LEO:
• IASI+GOME-2, AIRS+OMI, CrIS+OMPS could provide UV+IR ozone products for more than a decade.
• Combined UV+IR ozone products from GEO-UVN and GEO-TIR aboard Sentinel 4 (Ingmann et al, 2012 Atm. 

Env.)
• Sentinel 5p (TROPOMI) will provide column CO and CH4.
• OCO-2+AIRS, GOSAT II (IR+NIR) could provide vertical discrimination.

• GEO
• TEMPO, Sentinel-4, and GEMS, would provide high spatio-temporal air quality information.
• GeoCarb and G3E could provide geo-carbon information.
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Conclusions
• Climate	mitigation	requires	an	observation	system	of	both	

long	and	short-lived	climate	pollutants.
• AQ	mitigation	in	developing	countries	will	impact	the	near-

term	trajectory	of	carbon	emissions.
– The	co-evolution	of	CO2,	NO2,	CO,	and	particulates	can	provide	

insight	

• Climate	variability	and	feedbacks	can	coherently	amplify	
AQ	and	carbon	distributions
– ”Extreme”	events	may	hinder	policy	objectives
– Trend	detection	of	AQ	and	carbon	must	account	for	natural	

variability	

• Integrating	AQ	and	carbon	constellations	will	provide	an	
unprecedented	capability	
– Need	quantitative	analysis	of	constellation(s),	e.g.,	OSSEs.



Backup



Observations of 
composition typically used 
for the study of air quality 
contain information 
regarding local energy use. 

These have the potential to 
complement analyses of 
CO2, improving our 
process-based 
understanding of emissions. 



Conclusions
• Climate	change	mitigation	requires	attribution	of	climate	forcing	to	

spatial	scales	at	which	mitigation	occurs.		
– Top	10%	of	emissions	account	for	the	majority	of	net	CH4	RF.
– Expansion	of	emissions	in	Southeast	Asia	will	have	a	proportionally	larger	

impact	because	of	efficient	ozone	and	CH4	RF	export.

• CO2	growth	rate	mitigation	requires	attribution	of	forcing	and	
feedbacks	at	the	spatial	scales	on	which	they	occur.
– The	tropics	released	2.4	± 0.34	Gt	more	carbon	into	the	atmosphere	in	2015	

than	in	2011	accounting	for	78.7%	of	the	global	total	3.0	GtC NBE	difference,	
and	88%	of	the	atmospheric	CO2	growth	rate	differences.

– While	tropical		continental	contributions	were	roughly	the	same,	the	
dominant	carbon	processes	were	different:	S.	America	(GPP),	Africa	(Resp),	
and	Asia	(Fire)

– Fluxes	associated	with	climate	“extremes”	were	the	dominant	drivers	of	the	
tropical	fluxes.	

• A	framework	common	to	both	”emergent”	constraints	and	verifiable	
predictions	of	climate	forcing	provides	a	basis	for	linking	
observations	and	models	within	an	assimilation	paradigm.	



The	epicenter	of	the	2015	El	Niño

The 2015 rivals the 1997-1998
ENSO (ENSO 3.4 index). 

ENSO lead to dry and warm 
forcing patterns centered over 
Indonesia.



Radiative Forcing	in	2050	(RCP6)
CH4 emissions RF is driven
primarily in the Middle East
And in Northern India 
(Gangetic plain)

Total CH4 RF is balanced 
between chemical reductions 
in central/south China and 
increases in US/Europe. 

Chemical-driven increases are 
a consequence of improved air 
quality standards

Chemical-driven decreases are 
a consequence of deteriorating 
air quality. 

Air quality-climate disbenefits

RF CH4 emissions

RF CH4 emissions+chemistry

mW/m2

Walker and Bowman, in Rev.



Ranking	total	CH4-equivalent	emissions

RF CH4 from NOx, CO, and VOC 
can be converted to an equivalent 
emission of RF CH4. 

The top 10% of positive 
equivalent emissions (eqem) 
account for 50% of the total 
positive eqem. The top 10% of 
negative eqem account for 60% 
of the total negative eqem

2050-2000 2100-2000

CH4 direct emissions drive mid-
century RF but NOx emissions 
drive end-of-century RF

Walker and Bowman, in Rev.



Largest	CO2	Growth	Rate	in	50	years

3.05 ppm yr-1 (2015)
2.93 ppm yr-1 (1998)

2015 had the highest atmospheric growth record in the Mauna Loa 
record, beating out the 1998 growth rate.

Growth rate was 50% higher than the previous year but 
anthropogenic emissions were roughly the same.

What were the spatial drivers of this growth rate?  How are they 
related to climate forcing?



Paris	Accord

• On	Oct.	24,	2016	Indonesian	President	Joko	“Jokowi”	Widodo	signed	the	Paris	Agreement	
into	law.

• On	Nov.	4,	2016	the	landmark	Paris	Agreement	for	carbon	mitigation	was	put	into	effect.

According to Indonesia’s official BAU, the country’s emissions level is expected to 
increase from 1,805 MtCO2e/year in 2020 to 2,885 MtCO2e/year in 2030. Indonesia’s 
pledge corresponds to absolute emission levels of 1,335 MtCO2e/year unconditionally 
by 2020, 2,050 MtCO2e/year unconditionally by 2030, and 1,700 MtCO2e/year 
conditionally by 2030. http://climateactiontracker.org/countries/indonesia/2016.html



Tipping	points:	the	hydrological	context

Centered on Kalimantan, GRACE gravity 
data shows a liquid water equivalent 
thickness (LWT) anomaly of -4 cm, 4x 
larger than then decadal mean anomaly.

Field et al, 2016 PNAS reported a non-
linear relationship between firecounts
and precipitation below 4 mm/day

Fields et al, 2016 (PNAS) 



Representative Concentration Pathways

25

RCP 6.0 includes monotonic NOx reductions but non-monotonic 
CH4 increase


