COVID-19 Induced Fingerprints of a New Normal Urban Air Quality in the United States

S. Kondragunta¹, Z. Wei², B. C. McDonald³, D. L. Goldberg⁴, D. Q. Tong⁵

¹NOAA NESDIS Center for Satellite Applications and Research ²IM Systems Group ³NOAA Chemical Systems Laboratory ⁴Milken School of Public Health ⁵George Mason University

> Submitted to Journal of Geophysical Research, under review. All figures shown in this presentation are from this paper.

On-road NOx emissions data from NOAA/OAR (PI: B. McDonald; see paper by Harkins et al., ERL, 2021).

NOAA National Satellite and Information Service

OCTANIC AND ATMOSPY

RTMENT OF COMM

NATIONAL

STRATION

July 13, 2021

Objective

In this paper, we tried to answer the following three questions:

- Are changes in NO_x emissions during the lockdown detectable in TROPOMI tropNO₂ data?
- Are the economic indicators consistent with emissions changes?
- Did the NOx emissions and TROPOMI tropNO₂ trends reverse with the lifting of lockdown measures in the major metro areas?

Are changes in on-road NO_x emissions during the lockdown detectable in TROPOMI tropNO₂ data?

- Decreases in TROPOMI tropNO₂ data (blue-green) consistent with NO_x emissions reductions
- Increases in TROPOMI tropNO₂ data (red) due to our double differencing technique not completely accounting for meteorological differences between 2020 and 2019. Modeling studies (e.g., Qu et al., 2021) confirm this finding.

NOAA National Environmental Satellite, Data, and Information Service

Are changes in on-road NO_x emissions during the lockdown detectable in TROPOMI tropNO₂ data?

- Weekday (blue) and weekend (red and green) differences noticeable in daily TROPOMI tropNO₂ data;
- Weak correlation with NO_x emissions on daily time scale, even after data are normalized for meteorology using Goldberg et al. (2020) technique
- Improved correlation of normalized tropNO₂ with NO_x emissions when 28-day rolling averages are used

NOAA National Environmental Satellite, Data, and Information Service

Are changes in on-road NO_x emissions during the lockdown detectable in TROPOMI tropNO₂ data?

- Changes in on-road monthly mean NOx emissions between 2020 and 2019 for five different cities correlate well (r = 0.68) with monthly mean TROPOMI tropNO₂
- Similar analysis with changes in power plant emissions did not show a strong correlation (r = 0.35)

NOAA National Environmental Satellite, Data, and Information Service

Are the economic indicators consistent with emissions changes?

NOAA National Environmental Satellite, Data, and Information Service

Did the trends reverse with the lifting of lockdown measures in the major metro areas?

- On-road NOx emissions not fully recovered and ~20% below normal
- TROPOMI tropNO₂ also showing below normal values
- Although the data represent five different cities, trend in TROPOMI tropNO₂ is driven by San Francisco and San Joaquin Valley

Conclusions

- Positive linear correlation between changes in on-road monthly mean NO_x emissions and changes in monthly mean TROPOMI tropNO₂ (r = 0.68) suggests satellite data can be used to study changes in NO_x emissions due to traffic where ground observations are not available.
- Economic activity changes detected in TROPOMI tropNO₂ data
- Analyzing the effect of lockdown on particulate pollution (AOD/PM2.5) not straightforward. Published work thus far has not considered removing biomass burning signals in the aerosol data.

We developed a VIIRS AOD to TROPOMI trop NO_2 ratio method to look for signals of biomass burning. High AOD and low NO_2 implies non-local sources.

