

The Global Impacts of COVID-19 Lockdowns on Urban Air Quality: **A Critical Review and Recommendations**

Georgios

Gkatzelis

Jessica Gilman

HELMHOLTZ

Brian McDonald

Anne Lange

Thompson

Henk

Eskes

Andreas Petzold

Rita

Gomes

Jeff

Peischl

Steve Brown

Astrid **Kiendler-Scharr**

The New York Times

Pandemic's Cleaner Air Could Reshape What We Know About the Atmosphere

Coronavirus shutdowns have cut pollution, and that's opened the door to a "giant, global environmental experiment" with potentially far-reaching consequences.

India Gate, New Delhi

Apr. 1

New Delhi

ECONOMY

Coronavirus Lockdowns Clear the Air, but the Green Effect Could Be Fleeting

Some worry long-term environmental efforts will suffer as governments look to stimulate growth

The Guardian

Covid-19 lockdowns have improved global air quality, data shows

The Washington Post

Washington has its cleanest spring air in 25 years: How air quality has improved during the coronavirus crisis

Literature review process: Response to the pandemic

Literature review process: Response to the pandemic

How drastic changes do we expect?

Inventory-based business as usual emission scenario

The global EDGAR inventory provides context for expected changes in air pollutant species in the atmosphere due to the COVID-19 pandemic.

Transportation contributed

NO_x: 36% (15–51%)

Inventory-based business as usual emission scenario

The global EDGAR inventory provides context for expected changes in air pollutant species in the atmosphere due to the COVID-19 pandemic.

Transportation contributed		
NO _x :	36% (15–51%),	
PM _{2.5} :	8% (3–19%),	

Inventory-based business as usual emission scenario

Stringency index as a metric for lockdown measures

Categories included are:

- the implementation and extent of school closures
- implementation and extent of workplace closures
- restrictions on public events
- Gatherings
- closure of public transport
- degree of public information campaigns
- extent of measures to enforce stay-at-home
- restrictions on internal movement,
- international travel
- testing policy, and
- contact tracing.

As such the index <u>includes both</u> <u>measures that impact emissions</u> <u>and measures with no obvious</u> <u>consequence for emissions</u>.

https://ourworldindata.org/grapher/covid-stringency-index

Anne Lange Henk Eskes

We did our own bit of analysis first

Difference in NO_2 column concentrations based on the TROPOMI measurements for 2020 compared to 2019.

Stringency index is used for April as a representative month for the most stringent conditions globally. China is an exception where lockdown measures were implemented in February-March and relaxed in April.

Data included in the upcoming analysis

Observed changes as percentage difference

Observed changes as percentage difference

Observed changes as percentage difference

Observed percentage change

Percent changes vs. stringency index

- Emission of primary pollutants are expected to decrease as the lockdown measures become stricter
- It is essential to account and quantify the effects of meteorology to quantitatively link changes in atmospheric abundance with changes in emissions

Comparison of observations to the Forster inventory

inventory emission reduction, % *Forster et al. (2020), Nature*

- Agreement within a factor of 2, within the associated uncertainties.
- The stringency of lockdown measures has a strong relationship with levels of traffic
- The similarity between changes in the emissions inventory and atmospheric observations due to COVID-19 lockdown measures suggests the importance of traffic as a source of NOx in cities around the world.

O₃ percent changes and correlation to stringency index

15

PM_{2.5} and **SO₂** observations compared to the Forster inventory

Absolute concentrations: Lockdown vs. Reference periods

(N/N) = (number of publications / number of datasets)

WHO guideline means
lockdown violin plot
lockdown measurements
lockdown mean
reference period mean

How well do we understand PM_{2.5} and O₃?

What is the chemical composition of PM_{2.5}?

VOCs

What happens in chemically active seasons?

What is the role of secondary PM_{2.5} on air quality?

Le et al., Science, (2020)

What is the role of secondary PM_{2.5} on air quality?

POA SOA nitrate sulphate ammonium chloride

What is the role of secondary $PM_{2.5}$ on air quality?

PM_{2.5} concentrations and precursor compound reductions

PM guideline values are still exceeded

Member of the Helmholtz Association

Observed percentage change

How do VOC emissions change during lockdowns?

Ozone Isopleth

- To get O_3 right you need both NO_X and VOC emission reductions
- NOx emission reductions can be quantified relatively well
- But which VOC emission sectors are expected to change though?

Importance of residential emissions in urban environments

- Volatile chemical products (VCPs) contribute significantly to urban VOC emissions in the US
- Places with drastically different population densities show high fraction of VCPs
- Do these emissions contibute to O₃ production?

O₃ formation in New York City during a heatwave

Quantifying changes in **residential VOC emissions** will be essential in accurately determining O_3 during the lockdown periods

NOAA Instrumented Mobile Laboratory in NYC

Coggon et al., (2021), in press

How could wildfire season affect O₃ formation in lockdowns

Radical production & termination balance

Robinson et al., (2021), in review

- Fast transition to a NO_X sensitive regime
- O₃ production expected to increase moving over an urban environment
- Periods influenced by biomass burning will be challenging to compared to previous years

Concluding Remarks

1. Importance of Accounting for the Effects of

2. Statistics for certain pollutants is good but for other not.

3. Comparisons to emission inventories is good for NO₂ but for other pollutants more work is required

4. A logarithmic O₃ increase with increasing stringency index is evident

Variable Effects and Feedbacks Due to Lockdowns

Future Recommendations

- Changes in O₃ associated with COVID-19 emissions reductions, particularly O₃ during photochemically active seasons.
- Changes in PM_{2.5} may enable similar sensitivity analyses to primary emissions. A larger analysis of <u>chemically speciated</u> <u>PM_{2.5} data</u>, where available, will be especially informative.
- Expansion of the available analyses to include a larger number of short-lived species would help to constrain and inform emissions inventories
- 4. Analysis of the <u>radiative forcing</u> <u>associated with short-lived climate</u> <u>forcers</u> is a priority.
- This review has been limited in scope to short-lived air pollutants that are relevant to air quality and climate, but <u>not to longer</u> <u>lived species such as CH₄, CO₂, N₂O and halogenated short lived climate</u> <u>forcers.</u>

Emissions Sources and Impacts on Air Quality and Climate Home Search database Download data Submit data Contact Links

COVID-19 AQ Data Collection

Publications per Country/Region that address the impacts of COVID-19 lockdowns on air quality:

https://covid-aqs.fz-juelich.de/

Georgios Gkatzelis, g.gkatzelis@fz-juelich.de

Download data but also submit your own

(U	ABOUT
se rch database a dravitioart	Legal hotice Data protec
8	

which contractions, alloch 2027

VICAL SCIENTIFIC sport-covid-eqs@fz-Juelich de Scienci aqs@fz