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Abstract 

Many Earth observing sensors have been designed, built and launched with primary objectives of 
either terrestrial or ocean remote sensing applications. Often the data from these sensors are also 
used for freshwater, estuarine and coastal water quality observations, bathymetry and benthic 
mapping. However, such land and ocean specific sensors are not designed for these complex aquatic 
environments and consequently are not likely to perform as well as a dedicated sensor would. As a 
CEOS action, CSIRO and DLR have taken the lead on a feasibility assessment to determine the 
benefits and technological difficulties of designing an Earth observing satellite mission focused on 
the biogeochemistry of inland, estuarine, deltaic and near coastal waters as well as mapping 
macrophytes, macro-algae, sea grasses and coral reefs. These environments need higher spatial 
resolution than current and planned ocean colour sensors and need higher spectral resolution than 
current and planned land Earth observing sensors offer (with the exception of several R&D type 
imaging spectrometry satellite missions). The results indicate that a dedicated sensor of (non-
oceanic) aquatic ecosystems could be a multispectral sensor with ~26 bands in the 380-780 nm 
wavelength range for retrieving the aquatic ecosystem variables as well as another 15 spectral bands 
between 360-380 nm and 780-1400 nm for removing atmospheric and air-water interface effects. 
These requirements are very close to defining an imaging spectrometer with spectral bands between 
360 and 1000 nm (suitable for Si based detectors), possibly augmented by a SWIR imaging 
spectrometer. In that case the spectral bands would ideally have 5 nm spacing and Full Width Half 
Maximum (FWHM), although it may be necessary to go to 8 nm wide spectral bands (between 380 
to 780nm where the fine spectral features occur -mainly due to photosynthetic or accessory 
pigments) to obtain enough signal to noise. The spatial resolution of such a global mapping mission 
would be between ~17 and ~33 m enabling imaging of the vast majority of water bodies (lakes, 
reservoirs, lagoons, estuaries etc.) larger than 0.2 ha and ~25 % of river reaches globally (at ~17 m 
resolution) whilst maintaining sufficient radiometric resolution.  

Keywords: (Earth observation, aquatic ecosystems, multispectral remote sensing, imaging 
spectrometry, optical sensor specifications, environmental applications) 
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Executive summary  

Initially this work had a more limited scope to focus on inland waters only. It started as a Committee 

on Earth Observation Satellites (CEOS) response to the Group on Earth Observations System of 

Systems (GEOSS) Water Strategy developed under the auspices of the Water Strategy 

Implementation Study Team that was endorsed by CEOS at the CEOS 2015 Plenary. As one of the 

actions, CSIRO took the lead on recommendation C.10: A feasibility assessment to determine the 

benefits and technological difficulties of designing a hyperspectral satellite mission focused on water 

quality measurements. This inland water focus was considered as being of too limited scope as there 

has never been a dedicated published study to assess the requirements for an aquatic ecosystem 

imaging spectrometer or multispectral sensor (excluding ocean requirements).  

We performed a feasibility assessment of the benefits and technological challenges of designing a 

passive multispectral or hyperspectral satellite sensor system focused on biogeochemistry of inland, 

estuarine, deltaic and near coastal waters - as well as mapping macrophytes, macro-algae, 

seagrasses, coral reefs and shallow water bathymetry. Compared to any existing sensors, this sensor 

shall need to have a significantly higher spatial resolution than 250 m, which is the maximum spatial 

resolution of dedicated current aquatic sensors such as Sentinel-3 as well as future planned aquatic 

sensors such as the Coastal Ocean Color Imager (COCI) at 100 m spatial resolution. Further, the 

GEOSS Aquawatch suggested that alternative approaches, involving augmenting designs of near 

future planned spaceborne sensors for terrestrial and ocean colour applications to allow improved 

inland, near coastal waters and benthic applications, could offer an alternative pathway. 

Accordingly, this study also analyses the benefits of this option as part of this feasibility study. 

The approach was to follow a science and applications traceability approach of required aquatic 

ecosystem variables to be measured, the level of accuracy required, the level of temporal, spatial, 

spectral and radiometric resolution required. Although we were aware of current bounds of what 

was technically feasible, we did believe that the requirements should lead this study and therefore 

may not (yet) be technically feasible. 

Because there are global pressures (e.g., growing human exploitation of coastal and inland resources 

and changing climate), we need to study effects on global scales.  A global observation system is thus 

an appropriate and invaluable tool to assess the impact at all spatial and temporal scales. In many 

countries, field-based monitoring efforts are currently insufficient or even absent to provide 

national-scale assessments of aquatic ecosystems. In improving the design of such assessments 

using Earth observation, key considerations include: 

1) Temporal sampling to i) represent the dynamics of water quality, benthic, coral reef and 

water depth change and the range of conditions that can occur over diurnal, seasonal, and 

annual cycles (e.g., droughts and flooding), ii) develop time series for understanding 

phenology and trend analysis, including the effects of climate change, iii) retrospective 

processing of satellite archives of relevant data, which date back to the early 1980’s, may also 

reveal temporal changes, trends, and anomalies across inland water and near-coastal waters 

to coral reef  systems. 

2) Spatial sampling that is representative of the processes and dynamics in these non-oceanic 

aquatic ecosystems to provide understanding of system processes, such as for water bodies: 
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heterogeneity, environmental flows, interrelationships between water bodies, and 
catchment runoff effects, global climate change effects including acidification; and for 
benthic ecosystems the effects of these flows as well as predation, smothering, trophic state 
and global warming effects such as water temperature changes, increasing acidification, and 
coral bleaching. End-user requirements should determine the optimal spatial and temporal 
sampling scheme, but logistical, operational, and financial constraints usually prevent the 
optimal sampling scheme from being realised in situ. Extensive distances and remoteness, for 
instance, may make capturing the spatial distribution of measurements using field-based 
methods infeasible. Earth observation (EO)-derived aquatic ecosystem information, albeit on 
a more limited set of parameters, may be used to overcome the challenges in sampling 
schemes based solely on field-based approaches. 

3) Capability building should focus on the integration of EO data and field-based observations, 
integration of observations with modelling (biogeochemical and hydrodynamic) and the 
development of early-warning tools such as for algal blooms and coral bleaching.  

 

We analysed past existing and upcoming satellite sensor systems of relevance for aquatic ecosystem 
assessment. While policy, legislative, environmental, and climate change drivers should steer the 
development of a global, operational system for aquatic ecosystem monitoring, the ideal satellite 
sensor system does not yet exist. Different satellite systems show different trade-offs between the 
temporal frequency (once a day to once a year), spatial resolution (1.0 m to 1.2 km pixels), spectral 
resolution and range (and the related issue of more aquatic ecosystem variables at higher 
confidence level), radiometric resolution (how accurate and how many levels of reflectance are 
measureable as well as the dynamic range measureable), and the costs of unprocessed satellite data 
acquisition (ranging from publicly available to commercially available very high spatial resolution 
data at ~30 USD per km2 for the most expensive type of single scene acquisition). These trade-offs 
also influence the usefulness for aquatic ecosystem assessment. 

Spatial resolution (the size of the area being measured on the ground) has consequences for imaging 
(i) small water bodies such as small- or medium-width river systems or small lakes. In such situations, 
high spatial-resolution imagery (with pixel sizes of 1 to 10 m) may be the only option, possibly 
leading to significant data-acquisition and processing costs. A similar argument exists for mapping 
habitats in coastal and ocean waters formed by foundational species, including submerged plants 
such as macrophytes (in inland waters) and seagrasses; kelp; corals; sponges; and benthic micro-
algae, and environments such as rock reefs and various bottom substrates. However, for a global 
mapping mission, spatial resolution between 10 and 30 m may be suitable and effective. 

Spectral resolution and range (the number, width, and location of spectral bands) determines the 
amount and accuracy of aquatic ecosystem variables that are discernible from a water body. Sensors 
with few broad VIS-NIR bands (usually a blue, a green, a red and a nearby infrared spectral band) 
may only be used to detect those variables that have a broad spectral response: TSM, Kd, Secchi disk 
transparency, turbidity, and CDOM as water column variables and presence –absence of underwater 
flora and fauna (e.g. corals). Algal pigments such as chlorophyll-a and cyanobacterial pigments such 
as cyanophycoerythrin and cyanophycocyanin may also be detected if the broad spectral bands 
happen to be located appropriately. However, at low concentrations, accuracy will be low, as broad 
spectral bands cannot discriminate narrow pigment spectral absorption features from other 
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absorbing and backscattering materials in the water column or benthos. As the number of narrower 
and more suitably positioned spectral bands increases (e.g., for the coarse spatial resolution ocean 
colour sensors MODIS, MERIS, OLCI, and OCM-2), chlorophyll-a becomes a more accurately 

measureable variable, and other cyanobacterial pigments may become detectable.  

Radiometric resolution determines the lowest interval of radiance or reflectance that the sensor can 
reliably detect and discriminate per spectral band. As the spectral and spatial resolution increase, 
the useful signal relative to noise in the data decreases (as less photons are captured). This trade-off 
in spectral, spatial, and radiometric resolution is countered by improvements in instrument design 
and technology, for example, detectors (e.g. CMOS) which have much better performance than 
older sensors. An added complexity is that the water leaving signal at the satellite sensor (typically at 
an altitude between 450 and 800 km for polar orbiting Low Earth Orbit (LEO) ) is a  small part of the 
total measured signal, composed of the water leaving signal plus the reflections at the air-water 
interface plus the signal from reflected sun and skylight in the atmosphere, hence radiometric 
resolution should be sufficient to detect relevant levels of aquatic ecosystem variables through a set 
of atmospheric and air water interface conditions and solar angles. In addition, temporal radiometric 
stability is a key requirement to ensure generations of consistent water quality products like TSM, 
chlorophyll, cyanobacterial pigments, Kd, Secchi disk transparency, turbidity, and CDOM as well as 

consistency in water depth and benthic mapping.  

We considered  three approaches to determine the specifications for an aquatic ecosystem Earth 
observing sensor: i) a literature study with a focus on quantitative research including end user 
requirements as well as the sensor specifications required to  be able to detect and assess aquatic 
ecosystem variables, ii) a simulation of bottom of atmosphere (or water leaving) radiance and 
reflectance for inland, coastal and coral reef waters with different depths, coupled with spectral 
libraries of substratum types such as sands, seagrasses, macro-algae and corals using the WASI-2D 
software package augmented by non-algal particulate matter absorption and phytoplankton 
backscattering inputs, and iii) the identification of the requirements of various types of algorithms 
for retrieving these variables. Often in literature one of these aspects is considered but seldom has a 

study considered all three aspects simultaneously. 

An important distinction to be made is between those water bodies where the incoming sun- and 
skylight does not reach the bottom at all or where the bottom reflectance does not leave the water; 
these are the optically deep waters. Optically shallow waters are those waters where there is a 
measurable amount of reflected light from the bottom passing through the water column and 

reaching the Earth observing sensor. 

As a result of the above mentioned three approaches, we identified that the following requirements 
should determine a comprehensive aquatic ecosystem Earth observing capability: i) ability to 
estimate algal pigment concentrations of chlorophyll-a, accessory pigments, cyanobacteria pigments 
(cyano-phycoerythrin and cyano-phycocyanin especially) as well as other wavelengths relevant for 
phytoplankton functional types research, ii) algal fluorescence (especially chlorophyll-a fluorescence 
at 684 nm), iii) ability to measure suspended matter, possibly split up into organic and mineral 
matter, iv) ability to measure coloured dissolved organic matter and discriminate terrestrial from 
marine CDOM, v) spectral light absorption and backscattering of the optically active components, vi) 
measures of transparency of water such as Secchi disk transparency, vertical attenuation of light and 
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turbidity. For optically shallow waters also: vii) estimates of the water column depth (bathymetry) 
and viii) estimates of substratum type and cover (e.g. muds, sands, coral rubble, seagrasses, macro-
algae, corals, etc.) as well as plants floating at or just above the water surface. For residual sun glint 
correction (if sun glint mitigation measures  are insufficient) and for estimating the atmospheric 
composition it is also required to have spectral bands to measure O3, NO2, water vapour and aerosols 
as well as have some bands in the nearby infrared and/or SWIR for sun glint correction. 

The results indicate that a dedicated sensor of (non-oceanic) aquatic ecosystems could be a 
multispectral sensor with ~26 bands in the 380-780 nm wavelength range for retrieving the aquatic 
ecosystem variables as well as another 15 spectral bands between 360-380 nm and 780-1400 nm for 
removing atmospheric and air-water interface effects. These requirements are very close to defining 
an imaging spectrometer with spectral bands between 360 and 1000 nm (suitable for Si based 
detectors), possibly augmented by a SWIR imaging spectrometer. In that case the spectral bands 
would ideally have 5 nm spacing and FWHM, although it may be necessary to go to 8 nm wide 
spectral bands (between 380 to 780nm where the fine spectral features occur -mainly due to 
photosynthetic or accessory pigments) to obtain enough signal to noise. The spatial resolution of 
such a global mapping mission would be between ~17 and ~33 m enabling imaging of the vast 
majority of water bodies (lakes, reservoirs, lagoons, estuaries etc.) larger than 0.2 ha and ~25 % of 
river reaches globally (at ~17 m resolution ) whilst maintaining sufficient radiometric resolution.  

A cost-effective alternative solution of obtaining improved data over aquatic ecosystems could be to 
augment near future planned terrestrial Earth observing sensors to make them significantly more 
useful for aquatic ecosystem Earth observation. Two spectral bands (one between 615-625 nm) and 
one between 670-680 nm) would greatly enhance the capability of these terrestrial focused sensors 
to determine two important aspects of water quality and benthic composition or cover in inland, 
coastal and coral reef ecosystems: respectively, cyanobacterial (or blue-green algal) concentration 
and overall abundance of algae via the main photosynthesis pigment of chlorophyll-a. 

As spectral and spatial resolution are the core sensor priorities, the radiometric resolution and range 
and temporal resolution need to be as high as is technologically and financially possible. A high 
temporal resolution could be obtained by a constellation of Earth observing sensors e.g. in various 
low Earth orbits augmented by high spatial resolution geostationary sensors. 
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1 Background 

ARNOLD G. DEKKER, NICOLE PINNEL, KEVIN R. TURPIE, MAYCIRA COSTA, CLAUDIA GIARDINO  

1.1 Introduction to remote sensing of aquatic ecosystems  
This report is a high-level feasibility assessment of the benefits and technological challenges of 

designing a multispectral or hyperspectral satellite sensor system focused on biogeochemistry of 

inland, estuarine, deltaic and near coastal waters - as well as mapping macrophytes, macro-algae, 

seagrasses, coral reefs and shallow water bathymetry. Compared to any existing sensors this sensor 

shall need to have a significantly higher spatial resolution than 250 m, which is the maximum spatial 

resolution of dedicated current aquatic sensors such as Sentinel-3, and future planned aquatic 

sensors such as the Coastal Ocean Color Imager (COCI – 100 m res). Further, the GEO Community of 

Practice AquaWatch suggested that alternative approaches, involving augmenting designs of 

spaceborne sensors for terrestrial and ocean colour applications to allow improved inland, near 

coastal waters and benthic applications, could offer an alternative pathway to addressing the same 

underlying science questions. Accordingly, this study also analyses the benefits and technological 

difficulties of this option as part of the high-level feasibility study. 

Initially this work had a more limited scope to focus on inland waters only. It started as a Committee 

on Earth Observation Satellites (CEOS) response to the Group on Earth Observations System of 

Systems (GEOSS) Water Strategy developed under the auspices of the Water Strategy 

Implementation Study Team that was endorsed by CEOS at the 2015 Plenary. As one of the actions, 

CSIRO initially took the lead on recommendation C.10: A feasibility assessment to determine the 

benefits and technological difficulties of designing a hyperspectral satellite mission focused on water 

quality measurements. This was considered a too limited scope, as there has never been dedicated 

study to assess the requirements for an aquatic ecosystem imaging spectrometer or multispectral 

sensor (excluding ocean requirements). 

The approach is to create a science traceability of required aquatic ecosystem variables to be 

measured, the level of accuracy required, the level of temporal, spatial, spectral and radiometric 

resolution required. Although we are aware of current bounds of what is technically feasible, we did 

believe that the requirements should lead this study and therefore may not (yet) be technically 

feasible We examine the potential of establishing threshold and baseline observation requirements 

for sensors suitable aquatic ecosystem applications. This information will inform CEOS Agencies 

when considering the potential to adapt their sensors to add this globally important application area 

to their mission designs.  

The writing team is composed of experts in: 

• Earth observation of inland and near coastal waters, macrophytes, macro-algae, seagrasses and 

corals, bathymetry. 

• Optical sensors with preference for imaging spectrometry focus: to discuss feasibility of what is 

maximally possible with the trade-offs of signal to noise/radiometric , spectral, temporal and 

spatial resolution. 

• Atmospheric correction and air-water interface. 
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• In water and substratum algorithm with expertise in radiative transfer and/or bio-optical 

modelling. 

• Designing, building and launching satellite sensors with hyperspectral capabilities. 

CEOS notes that funding for dedicated missions, or for enhancing or adapting mission designs, is a 

decision for individual agencies and governments. CEOS recommends that it is key to define inland 

and near-coastal and benthic habitat essential variables for water quality including an assessment of 

relative priority, linked to defined economic, social and environmental benefits. This information 

would be of great value in informing investment decisions. 

In many countries, field-based water quality monitoring efforts are currently insufficient or even 

absent to provide national-scale assessments of aquatic ecosystems. In improving the design of such 

assessments using Earth observation, key considerations include: 

Temporal sampling to represent the dynamics of water quality, benthic and water depth change and 

the range of conditions that can occur over diurnal, seasonal, and annual cycles (e.g., droughts and 

flooding) as well as to develop time series for understanding phenology and trend analysis, including 

the effects of climate change. Retrospective processing of satellite images, archives of relevant data 

which date back to the early 80’s, may also reveal temporal changes, trends, and anomalies across 

inland water and near-coastal water systems. 

Spatial sampling that is representative of the processes and dynamics in aquatic ecosystems under 

consideration to provide understanding of system processes, such as for water bodies: 

heterogeneity, environmental flows, interrelationships between water bodies, and catchment runoff 

effects, global climate change effects; and for benthic ecosystems the effects of these flows as well 

as predation, smothering, trophic state and global warming effects such as water temperature 

changes, increasing acidification, coral bleaching. End-user requirements should determine the 

optimal spatial sampling scheme, but logistical, operational, and financial constraints usually prevent 

the optimal sampling scheme from being realised. Extensive distances and remoteness, for instance, 

may make capturing the spatial distribution of measurements using field-based methods infeasible. 

EO-derived aquatic ecosystem information, albeit on a more limited set of parameters, may be used 

to overcome the challenges in sampling schemes based solely on field-based approaches. 

Capacity building should focus on the integration of EO data and field-based observations, where 

possible augmented by biogeochemical and hydrodynamic modelling, and the development of early-

warning tools such as for algal blooms and coral bleaching.  

Table 2.7 provides an overview of past existing and upcoming satellite sensor systems of relevance 

for aquatic ecosystem assessment (see science and applications traceability (See Appendix 1) for 

what is needed). While policy, legislative, environmental, and climate change drivers should steer 

the development of an operational system for aquatic ecosystem monitoring, the ideal satellite 

sensor system does not yet exist; there are trade-offs between spatial, temporal, spectral, and 

radiometric characteristics. Thus, the available satellite sensors for retrospective, current, and 

planned future systems for aquatic ecosystems detection and monitoring are boundary conditions 

for developing regional, national, and transboundary monitoring systems using EO. 
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Satellite systems require trade-offs between the temporal frequency (once a day to once a year), 
spatial resolution (2.0 m to 1.2 km pixels), spectral resolution (and the related issue of more aquatic 
ecosystem variables at higher confidence level), radiometric resolution (how accurate and how many 
levels of reflectance are measureable), and the costs of unprocessed satellite data acquisition 
(ranging from 0 to ~30 USD per km2). This also influences their usefulness for aquatic ecosystem 
assessment 

Spatial resolution (the size of the area being measured on the ground) has consequences for 
imaging (i) small water bodies such as small- or medium-width river systems or small lakes. In such 
situations, commercial high spatial-resolution imagery (with pixel sizes of 1 to 5 to 10 m) may be the 
only option, possibly leading to significant data-acquisition costs. A similar argument exists for 
mapping submerged plants such as macrophytes (in inland waters) and seagrasses, kelp, corals, 
sponges, rocky reefs, benthic micro-algae in coastal and ocean waters. 

Spectral resolution (the number, width, and placing of spectral bands) ultimately determines the 
amount and accuracy of aquatic ecosystem variables that are discernible from a water body. Sensors 
with few bands (usually a blue, a green, a red and a nearby infrared spectral band) may only be used 
to detect those variables that have a broad spectral response: TSM, Kd, Secchi disk transparency, 
turbidity, and CDOM as water column variables and presence –absence of underwater flora and 
fauna (e.g. corals). Algal pigments such as chlorophyll-a and cyanobacterial pigments such as 
cyanophycocyanin may also be detected. However, at low concentrations, accuracy will be low, as 
broad spectral bands cannot discriminate the more narrow pigment spectral absorption features 
from other absorbing and backscattering materials in the water column or benthos. As the number 
of narrower and more suitably positioned spectral bands increases (e.g., from MODIS, VIIRS, OCM-2, 
MERIS, Sentinel-3 OLCI, and PACE), chlorophyll becomes an accurately measureable variable, and 
other cyanobacterial pigments may become detectable. 

Radiometric resolution determines the lowest level and interval of radiance or reflectance that the 
sensor can reliably detect and discriminate per spectral band. As the spectral and spatial resolution 
increases, the useful signal relative to noise in the data decreases. This trade-off in spectral, spatial, 
and radiometric resolution is countered by improvements in detector technology where, in general, 
more modern sensors have a higher radiometric sensitivity than older sensors. An added complexity 
is that the water leaving signal at the satellite sensor (typically at an altitude between 450 and 800 
km) is small part of the total measured signal, composed of the water leaving signal plus the 
reflections at the air-water interface plus the signal from reflected sun and skylight in the 
atmosphere, hence radiometric resolution should be sufficient to detect relevant levels of aquatic 
ecosystem variables through a set of atmospheric and air water interface conditions and solar 
angles. 

1.2 Strategic direction for detection, monitoring and assessment of 
inland, coastal and coral reef waters, including benthos and shallow 
water bathymetry     
The strategic direction for a dedicated satellite sensor designed for (non-oceanic) aquatic 
ecosystems shall follow the hypothesis that such a system can provide significant added value in 
comparison to other existing and planned satellite systems, and serve relevant requirements. 
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Aspects of added value are addressed in this report, including benefits to the society and social 
impacts as outlined in section 1.5, and benefits to relevant science questions as outlined in section 
2.2. The required public funded investments of such a mission shall be in balance with the expected 
socio-economic relevance and values generated out of the system. The system shall not conflict with 
actual or foreseeable commercial investments into comparable satellite systems. It shall support the 
self-sustainable and demand driven market development of value added Earth observations (EO) 
services, and investments in complementary commercial systems and services, by closing data gaps. 
Therefore, a collaboration and alignment with related investment activities of the private sector 
needs to be considered. 

We illustrate these concepts with some examples: The spectral resolution is expected to go beyond 
those of Worldview-3 or Sentinel-2, if the evaluation proves significant added value (e.g. providing 
increased reliability or further water quality and benthos related products of relevance). The spatial 
resolution shall be lower than those of the very high spatial resolution sensors to avoid competition 
with commercial sensors, but still suitable to resolve spatial structures in smaller inland and 
estuarine waters and heterogeneous benthic ecosystems whilst enabling a global mapping effort. 
The radiometric sensitivity should go beyond upcoming state-of-the art hyperspectral missions such 
as ENMAP, in order to reduce uncertainties of products over dark water targets and support a full 
exploitation of the spectral resolution. The revisit rate and data provision capacities may need to be 
suitable and reliable enough to serve scientific purposes, environmental monitoring and 
management, economic data exploitation and commercial investments into Intellectual property, 
market integration and application development.  

1.2.1 Remote sensing of inland water ecosystems  
Inland waters play a major role in water, sediment, carbon, nitrogen, and phosphorous cycles 
between the catchments and the receiving inland waters that (except for inland saline lakes and salt 
lakes) ultimately flow to the coastal waters. After Guerschman et al.,(2016) ‘inland waters’ are 
defined as inland surface waters including rivers, lakes, artificial reservoirs and estuaries, and their 
associated wetlands. ‘Water quality’ refers to the physical, chemical, and biological content of water, 
and may vary geographically and seasonally, irrespective of the presence of specific pollution 
sources. Many factors affect water quality. No single measure exists that constitutes good water 
quality and, as such, the term ‘water quality’ does not describe an absolute condition but rather a 
condition relative to the use or purpose of the water (e.g., for drinking, irrigation, industrial, 
recreational, or environmental purposes); water that is suitable for irrigation, for instance, may not 
meet drinking water standards. Thus, ‘water quality’ refers to the overall natural state of water 
bodies and to their responses to a combination of stressors such as changes in land use; nutrient 
inputs; contamination from farming practices, industrial activity, and urbanization; and changes in 
hydrology, flow regimes, and climate.  
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Figure 1.1 Different colours of water (images courtesy of CSIRO) depending on their concentration of optical 
water quality variables 

EO can be used to directly assess a subset of water quality variables, often referred to as optical 
water-quality variables, including concentrations of (Figure 1.1): 

• Chlorophyll-a (CHL, mg m-3): an indicator of phytoplankton biomass, trophic, and nutrient 
status; the most widely used index of water quality and nutrient status globally; 

• Cyano-phycocyanin (CPC, mg m-3) and cyano-phycoerythrin (CPE, mg m-3): indicators of 
cyanobacterial presence and biomass common in potentially harmful algal blooms; 

• Coloured Dissolved Organic Matter (CDOM, m-1 absorption at 440 nm): the optically 
measureable component of dissolved organic matter in the water column, sometimes used 
as an indicator of organic matter and aquatic carbon; 

• Total Suspended Matter (TSM, mg m-3) and Non-Algal pigmented Particulate matter (NAP): 
important for assessing the quality of drinking water, the amount of sediment in suspension 
and being transported and often controlling the light characteristic of aquatic environments. 

Together with pure water light absorption and scattering, it is possible to estimate the following 
variables that are a consequence of the optical water quality variables: 

Vertical light attenuation (Kd, m-1), Secchi disk transparency and turbidity: measurements of the 
underwater light field that are important to assess the degree of light limitation, rates of primary 
production, species composition, and other ecosystem responses; 

Emergent and submerged macrophytes: down to depth visibility, important indicators of wetland 
and aquatic ecosystem health and function (Figure 1.2);   

Bathymetry (m): if the bottom or bottom cover of a water body reflects a measureable amount of 
light through the water column to above the surface, the water depth can be estimated from which 
the bathymetry can be derived. 
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EO cannot directly assess water quality parameters that do not have a direct expression in the 
optical response of the water body. These parameters include many chemical compounds such as 
nutrients. However, in some cases, non-optical products may be estimated through inference, proxy 
relationships, or data-assimilation with remotely-sensed optical properties of products such as 
nitrogen, phosphate, organic and inorganic micro-pollutants, and dissolved oxygen. However, these 
relationships are empirical, may not be causal, and may have a limited validity range. By making use 
of the combined information in directly measurable optical properties, it is possible to derive 
information about trophic state, environmental flows (e.g. inorganic and organic sediment fluxes), 
and carbon and primary productivity.  

 

Figure 1.2 Macrophyte substrates: from left (Chara tomentosa (Lake Constance), Chara contraria (Lake 
Starnberg), Potamogeton perfoliatus (Lake Starnberg), Potamogeton pectinatus (Lake Starnberg) (Images 
courtesy of N. Pinnel, DLR). 

1.2.2 Coastal waters, benthos and shallow water bathymetry 
Coastal ecosystems are among the most productive ecosystems in the world, playing a major role in 
water, carbon, nitrogen, and phosphorous cycles between land and sea (Turpie et al., 2015). 
Furthermore, coastal regions are home to about two thirds of the world’s population (Cracknell 
1999). The social and economic wellbeing of human communities living in these regions depends 
significantly on the health of the surrounding coastal ecosystem. Studies of coastal and inland 
aquatic ecosystems including water quality are critical to understanding and protecting these 
valuable resources. These marginal regions between land and sea support valuable ecotones that 
are highly vulnerable to shifts in the environment, whether from climate change and its 
consequences (e.g., sea level rise), human activities (e.g., eutrophication or changes to existing 
watershed hydrology), or natural disturbances (e.g., storms or tsunamis). Coral reefs are a specific 
case of coastal as well as oceanic ecosystems functioning as high biodiversity ecosystems with a high 
sensitivity to climate change e.g. in the form of coral bleaching, ocean acidification and cyclone 
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damage. As these drivers of change can occur on large scales or even globally, spaceborne remote 
sensing is a key tool for systematically studying these environments. EO can be used to directly 
assess a subset of coastal and coral reef water quality variables as well as water column depth and 
substratum composition. The water column variables are the same as for inland waters: chlorophyll 
a (CHL), cyano-phycocyanin (CPC), cyano-phycoerythrin (CP), coloured dissolved organic matter 
(CDOM), total suspended matter (TSM), non-algal pigmented particulate matter (NAP), vertical light 
attenuation (Kd), Secchi disk transparency and turbidity. The water column depth and substratum 
composition variables are seagrasses (Figure 1.3), macro-algae (such as kelp), benthic micro-algae, 
sands, silts, muds, coral ecosystem variables (Figure 1.4)  (all down to depth visibility)- important 
indicators of d aquatic ecosystem health and function. 

 

Figure 1.3 Seagrass substrates: from left Zostera spp. (Baltic sea), Heterozostera tasmanica and Ulva (South 
Australia), Posidonia sinuosa (South Australia), Heterozostera spp.  (South Australia). (Images courtesy of 
CSIRO) 
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Figure 1.4 Coral reef substrates:  branching coral, massive coral, dead coral, tabulate coral in Ningaloo 
(Western Australia). (Images courtesy of N. Pinnel, DLR). 

1.3 Introduction to physics of remote sensing for aquatic ecosystems 
In order to define Earth observation sensor characteristics for an aquatic ecosystem sensor it is 

necessary to understand the physics of visible and nearby infrared sun light and sky light interactions 

with the atmosphere, the air-water interface, the water column and the benthos. Here we provide a 

brief introduction. In Chapter 2 a more thorough description of the physics is presented for 

modelling water leaving spectra, transmitted from the benthos, through the water column, through 

the air-water interface and atmosphere to simulate an at-satellite sensor signal (also referred to as 

Top of Atmosphere –TOA-signal. 

Earth observation of the optical water-quality and benthic parameters is achieved through optical 

means in the VIS/NIR spectral region (~400–900 nm). The light reaching the surface of a water body 

consists of direct sunlight and diffuse skylight after scattering and absorption interactions in the 

atmosphere (see Figure 1.5).  At the water surface, this light is either reflected by the surface or 

refracted, as it passes across the air/water interface. Within the water column, the water itself and 

different particulate and dissolved water column constituents transform the light by transmitting, 

absorbing, or scattering the down-welling light. Of the light that is scattered, a proportion may be 

backscattered in an upward direction and pass across the water/air interface at the right angle to be 

observed by satellite sensors once it has again passed through the atmosphere.  
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Figure 1.5 Schematic of the light Interactions that drive optical EO involving the air, water, and substrate 

In the visible spectrum (~400-900 nm), light interaction with sediments, chlorophyll, and coloured 
dissolved organic matter modify the shape and amount of the spectrally reflected signal (Kirk, 2011); 
it is these variations in the ‘shape’ of spectral reflectance that RS water quality algorithms largely 
take advantage of (see Figure 1.6). In wavelengths longer than 900 nm, water itself is such a strong 
absorber that very little radiation is reflected from water bodies, except for high turbid waters (see 
Figure 1.7). 

When an aquatic ecosystem is optically shallow it means that a measureable signal has passed 
through the water column to the bottom (the benthos) and has been reflected from the benthos is 
sufficient quantity to pass through the water column, through the air –water interface and through 
the atmosphere to be measurable at the satellite sensor. The benthos may be composed of benthic 
micro-algae in and just on top of clay, silt, sand or coral rubble, of seagrasses and macro-algae, rocky 
reefs and coral reefs with corals, coralline encrusting algae, sponges etc., (see Figure 1.8).  
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Figure 1.6 Typical reflectance spectrum from a eutrophic inland water body and the regions in which 
different water-quality parameters influence the shape of that spectrum (source T. Malthus, CSIRO, 
Australia) 

  

 

Figure 1.7   Reflectance spectrum from a turbid inland water body, Amazonian rivers (Lobo et al., 2015) 

 

 

0

2

4

6

8

10

12

400 500 600 700 800

R
ef

le
ct

an
ce

 (%
)

Wavelength (nm)



23 
 

 

 

Figure 1.8 Typical bottom reflectance spectra of macrophytes in Lake Starnberg and Lake Constance, 
Germany ranging from 0.5 to 3.5 m water depth (Pinnel, 2007). 

1.4 Introduction to algorithms to derive information from remote 

sensing data over aquatic ecosystems 
In order to create maps of a water quality or benthic variable or a characteristic such as bathymetry 
from Earth observing data we need algorithms that can translate the photon counts per spectral 
band imaged at the satellite sensor to the required relevant water body information: these are the 
remote sensing or Earth observation algorithms.  

There are several approaches to algorithms. The first distinction to be made is between algorithms 
that presume an atmospheric correction and air-water interface effect correction have already been 
performed so that the algorithm only has to deal with translating the remote sensing reflectance or 
water leaving radiance signal to an aquatic ecosystem variable. The other approach is to infer an 
aquatic ecosystem variable from the Top of Atmosphere signal measured at the satellite sensor.  

The algorithms for translating the measured spectral reflectance from a water body to water-quality 
variables range from: (i) empirical approaches (See reviews by Matthews et al., 2012 and Tyler et al., 
2016); (ii) semi-empirical approaches (Gons, 1999, Härmä et al., 2001); (iii) physics-based, semi-
analytical spectral inversion methods (Lee et al., 1998; Brando et al., 2012; a review by Odermatt et 
al., 2012)) to (iv) Artificial Neural Network and Machine Learning Methods and (v) Object Based 
Image Analysis methods. Increasingly use is made of several of these techniques together: e.g. 
performing atmosphere correction using a ANN approach and then performing a semi-analytical 
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inversion on the remote sensing reflectance or water leaving radiance at the surface (Brando et al., 
2012) or using a radiative transfer based atmospheric correction and then applying OBIA etc. 

These methods are outlined below and subsequently compared in terms of their need for field 
measurements, as well as their reliability, accuracy, maturity, and complexity. 

Empirical approaches statistically relate field samples of the optical water-quality or benthic 
variables to radiance or reflectance values measured by a satellite. While there is no need to 
understand the underlying physical relationships in such algorithms (such as atmospheric and 
underwater light processes), they do require coincident field measurements to calibrate the 
relationships for specific water bodies and, as such, struggle when water column constituents or 
benthic properties lie outside the range upon which the pertinent statistical relationship was based 
(in both space and time) and are not easily adapted to new satellite sensors. Empirical methods are 
also less reliable when undertaking retrospective monitoring, especially when water-quality or 
benthic characteristics may change and end up outside the range of those upon which the empirical 
relationship is based.  

Semi-empirical algorithms improve over pure empirical approaches by choosing the most 
appropriate single or spectral band combination to estimate the water column or benthic 
constituent. They can also partly annul some of the atmospheric and water surface effects. Semi-
empirical algorithms, however, also suffer from extrapolation errors beyond the range of 
constituents observed; the requirement to establish new, semi-empirical algorithms when switching 
sensors or water bodies; less reliability in retrospective monitoring when water-quality or benthic 
characteristics change, compared with fully empirical methods.  

The water-quality variables retrieved using empirical and semi-empirical algorithms include total 
suspended matter, suspended inorganic matter, CDOM, turbidity, transparency, chlorophyll and 
cyano-phycocyanin pigments (Matthews, 2011). With few exceptions (e.g., Minnesota lakes in the 
USA, Olmanson et al., 2011), neither approach offers significant confidence for application in a 
national monitoring system (Dekker and Hestir, 2012). The Minnesota lakes method worked because 
it is supported by a vast, citizens’ science-based field measurements effort. The benthic variables are 
water column depth, benthic type and benthic cover type. In addition floating or submerged 
macrophytes can be estimated. 

Semi-analytical inversion algorithms are built around knowledge of the underlying physics of light 
transfer in waters, and use the inversion of predictions of light reflecting from a water body, 
generated by forward radiative transfer models, to simultaneously estimate key water-quality and 
benthic constituents. Such approaches show improved accuracy for estimating water-column 
composition (Dekker et al., 2001), and are capable of assessing the error in the estimation of water-
quality constituents, are repeatable over time and space, are transferable to new water bodies and 
other sensors, and can be retrospectively applied to image archives (Dekker at al., 2006, Odermatt et 
al., 2012). This means that retrospective monitoring of optical water-quality changes is possible to 
assess the impacts and mitigation of various stressors to the system. In Dekker et al., (2011) a 
summary is presented of applying semi-analytical algorithm approaches to estimating water column 
composition, depth and benthic composition in optically shallow waters. 
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Artificial intelligence (AI) methods such as an Artificial Neural Network (ANN) and machine learning 

methods are becoming more powerful as computing power increases. ANN and machine learning 

methods can be trained using a radiative transfer model or using a bio-optical semi-analytical model 

or they can be trained using large amounts of in situ data.  

OBIA makes use of the pattern, texture and spectral information in a remote sensing image, it 

requires initial rule creation by an expert image and domain knowledge expert, but can then be 

rerun automatically on images of the same area. OBIA is not useful for water quality extraction but 

highly applicable to benthic vegetation and benthic substratum mapping. 

Recommended pathways for longer-term operational use is to develop robust inversion methods for 

application globally. The most likely globally valid methods for use in areas where there may be little 

or no in situ data for verification or for dealing with the vast range of possible types of waters are 

the methods that are based on understanding and simulating the physics of light interaction in the 

atmosphere, the air-water interface, the water column and the benthos.  

Semi-empirical methods can be used in the interim, as they often are reasonably robust for one 

variable for a category of water types and for a single EO sensor system. Empirical approaches are 

only useful as proof of concept but, in general, are not recommended if all optically active 

substances (Chl, CDOM, TSS, CPC, CPE and resulting physical properties of turbidity, Secchi Disk 

depth, and vertical light attenuation) as well as, in the case of optically shallow water systems, water 

column depth and benthic composition need to be determined. 

In situ data (field or laboratory measured data) is often referred to as “ground truth”. It is more 

proper to refer to these measures as field measurements as they are prone to uncertainty and 

inconsistencies. There are many different protocols and variations on protocols for measuring e.g. 

Chlorophyll-a (HPLC, spectrophotometrically or by fluorescence). Inter-lab variability is significant 

(REVAMP report; GLaSS protocols report www.glass-project.eu). Extraction before measurement 

and then measurement of the blue green algae pigment cyanophycocyanin is even more difficult. 

Recent additions of algal and CDOM fluorescence measurements have only increased the 

uncertainty of in-situ measurements. E.g. when field samples are taken and the same sample is 

distributed across multiple laboratories for measuring concentrations a variability of 50 % to 100 % 

and sometimes higher are encountered. Thus when comparing earth observation derived aquatic 

ecosystem measurements with field and laboratory measured samples, issues of validity and 

confidence must be addressed for both types of measurements. 

1.5 Benefits to society / societal impact 
Water and life – no two features more completely define planet Earth, and no two are more 

inextricably intertwined. Biology thrives particularly where water and land come together. Inland 

waters flow into coastal waters via creeks, rivers, reservoirs, dams, floodplains , estuaries and 

delta’s, except for saline and salt lakes which evaporate the incoming waters. In the transition zone 

from freshwater to salt water mixing takes place often driven by river flow and tidal action. In most 

cases there is no clear divide between freshwater and ocean water. Here we discuss inland and 

coastal waters including coral reefs, seagrasses, macro-algae and other benthic habitat components 

from a perspective of using earth observation to detect, monitor and assess these waters. 
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Access to clean, safe drinking water is a key determinant of quality of life, as it is directly linked to 
human health. Depending on the use to which the water is put, polluted or contaminated water may 
not be regarded as a useable resource. Similarly, as contaminant concentration is often related to 
water volume and flow, water quality is ultimately linked to water quantity.  

Inland waters have important functions in the environment (Dörnhöfer and Oppelt, 2016): they 
provide habitat for a wide range of species and form essential components in hydrological, nutrient 
and carbon cycles (Moss, 2012). Other usages encompass energy production, transportation, fishery 
and recreational purposes (Stendera et al., 2012; Carvalho et al., 2013a). 

The quality of water is affected by a number of stressors including urbanization, population growth, 
land use change, deforestation, eutrophication, inorganic and organic contaminants, morphological 
alterations and climate change effects such as acidification or increasing water temperatures , 
farming needs, overexploitation, and contamination from extractive industries in the mining and 
energy sectors (Kuenzer and  Renaud, 2012). As such, the relevance of water quality issues will 
change in different settings and its impact will ultimately depend on the water’s intended use. 

Therefore water quality detection, monitoring and assessment is key for ensuring that both human 
and ecosystem health are not compromised and for determining its suitability for other purposes 
(irrigation, industry, etc., Kuenzer et al., 2011). 

Coastal zones encompass less than 10 % of Earth’s land surface, yet over 70 % of the human 
population lives near a coast, estuary, wetland, or coral reef. These zones host the most significant 
and diverse bacterial, algal, plant, and animal populations of the planet; more than 100,000 animal 
species, with over 80 % of all marine fish species and over 20 % of bird species live in or migrate 
through these areas. The economic, environmental, and social benefits of coastal zones is now 
estimated at US$56 trillion (Barbier et al., 2011; Keddy 2010; MEA,2005; Costanza et al., 2014). By 
2025, the world’s population will have grown by one more billion people. By then, the risk that over 
70 % of humanity will have lost benefits derived from coastal zones and wetlands, including good 
water and living resources like fish, is ‘high’ (UNEP, 2012). 

Nation states require water quality information to inform key policy and legislative requirements 
that may include assessments against water quality guidelines and targets, national water quality 
management strategies, water resources assessments, state of the environment reporting, and 
strategies formulating adaptive responses to climate change. However, even in developed countries 
(e.g., USA and Australia), no nationally coordinated water quality monitoring programs may exist, 
and the authorities may instead rely on individual states to provide such information; moreover, 
frameworks for the dissemination of such information are often lacking or poorly developed (Dekker 
and Hestir, 2012). The IOCCG report (in prep) on earth observation of global water quality provides 
an overview of national and international directives that address these problems and aim to improve 
the ecological state of inland and coastal waters. A common target of these directives is to improve 
water quality by identifying stressors and by implementing sustainable management strategies 
supported by a more or less frequent monitoring. Currently, most monitoring programmes are field 
based even if sampling and analysis are labour, cost and time intensive (Schaeffer et al., 2013). It 
should be noted that providing information on species level, single measurements or unevenly 
distributed sampling points are problematic and may result in erroneous water quality classifications 
(Bresciani et al., 2011; van Puijenbroek et al., 2015). Moreover, in situ measurements hardly capture 
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the temporal and spatial variability of phenomena such as short-living cyanobacterial or 

phytoplankton blooms (Reyjol et al., 2014) or significant river inflow (lakes and reservoirs) and 

outflow events (from lakes and reservoirs to rivers and from rivers to coastal water). 

In summary, the evaluation of inland and coastal water systems lacks historic and actual 

information. Information gaps are of high ecological and economical relevance, e.g. the impact of 

dams and related economic/ecologic changes in the whole watershed down to the coast. Remote 

sensing based maps, time series, products and services can significantly contribute to close data 

gaps. Water supply and sanitation are thus essential components of any integrated approach to 

malnutrition and poverty reduction, and water quality is a key related challenge in sustainable 

development.  

Despite international efforts at monitoring global inland and coastal water quality, existing data are 

scarce and declining, have poor geographic and temporal coverage, may lack quality assurance and 

control, and thus be of questionable accuracy (Strebotnjak et al., 2012). The international 

coordinating group, the Group on Earth Observations (GEO), recognizes the value of EO for 

improving understanding of global water quality, as well as its hotspots and trends; for ensuring food 

and energy security; for facilitating poverty reduction; for protecting the health of humans and 

ecosystems; and for maintaining biodiversity. In 2007 GEO formed the Inland and Near-Coastal 

Water Quality Remote Sensing Working Group within the GEO Water Task with the objective to 

promote the development of improved optical water-quality products (GEO, 2007). Sine 2016 this 

GEO inland water activity has progressed into AquaWatch, a GEO Initiative for 2017 onwards. The 

coastal waters and coastal zone are part of the GEO initiative Blue Planet. 

Shallow benthic ecosystems are a subset of aquatic ecosystems that can be assessed using earth 

observation. It is possible to map benthic micro-algae, seagrasses, macro-algae (e.g. kelp), coral 

reefs and other shallow water ecosystems from space if the bottom is visible at the water surface. 

Water depth can be estimated as well as the water column composition. These shallow water 

ecosystems are essential for environmental, food and recreational purposes and are under pressure 

from navigation needs (ports, harbours), receiving waste water, overfishing, ocean acidification, 

temperature increases etc.  

The recently established United Nations Sustainable Development Goals have three SDG’s that 

relate to aquatic ecosystems that are the subject of this study: they are SDG 6: ”Clean Water and 

Sanitation” focusing on inland waters; SDG 14: ” Life below water” focusing on coastal and ocean 

ecosystems and SDG 15: “ Life on Land:” where for the purpose of this study the wetlands are a key 

target. Earth observation can play a key role in monitoring and assessing progress for all UN 

countries on those variables that are measureable from space (GEO, 2017). 

Through the provision of synoptic, consistent, and comparable data, EO has the opportunity to 

overcome some of the gaps and deficiencies that exist in current, field-based water quality 

monitoring efforts. Sufficient archives of EO data now exist to monitor global trends of some 

relevant variables in aquatic ecosystems for several decades and to develop suitable reports to 

address specific questions raised by decision and policy makers. Still there is so far no specific 

satellite sensor designed for supporting information extraction requirements over inland, coastal 

waters and coral reefs preventing more effective applications 
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1.6 What we propose to do       
In Chapter 2, the focus is on determining the satellite sensor requirements for inland, coastal and 
benthic ecosystems. We look at the science and application requirements and what can be 
measured using visible and nearby-infrared imagery. The science and applications traceability (See 
Appendix A.1) summarises these requirements into one table. The science questions cover topics of 
inland, estuarine, deltaic and lagoonal waters, transitioning into coastal and coral reef waters. It also 
includes shallow water bathymetry as well as the benthic types found. A science and applications 
traceability matrix is represented which condenses a significant amount of information required. 
With this information a series of simulations of what an earth observing sensor would see in space 
over a large variety of often occurring aquatic ecosystem permutations is performed that predict the 
spectrum as measured just above the water surface as well as in space. The full results of these 
simulations are presented in the Appendix A.2 that belongs to chapter 2. From these results sensor 
requirements are determined for spectral, radiometric, spatial and temporal resolution of a 
dedicated aquatic ecosystem sensor. We also discuss issues of atmospheric, adjacency effect and air-
water interface correction. Adjacency effect is where photons reflected from bright targets (sand 
beaches or vegetation) are scattered in the atmosphere so that it seems they come from dark 
targets such as deep water or a dense seagrass bed leading to erroneous interpretation. With all this 
knowledge it then becomes possible to assess the relevance of the sensor specifications of past 
(archival data), present and near future planned relevant satellite sensor missions. We are able to 
then determine what the specifications should be for a dedicated aquatic ecosystem earth observing 
satellite sensor, keeping in mind that a trade-off between spectral, spatial, radiometric and temporal 
resolution has to be made. In addition we can also recommend proposed modifications to planned 
future sensors to make them more suitable for (non-oceanic) aquatic ecosystems. 

Chapter 3 focuses on instrument, platform and mission design aspects. We discuss the merits and 
drawbacks of low earth polar orbiting satellite systems versus geostationary systems. Next we tackle 
the issues of how to correct the satellite signal for atmospheric constituents, light effects (e.g. 
polarization) instrument artefacts (stray light, striping, linear responses etc.), platform stability etc. 
An important and often underappreciated issue is that of pre-launch and post-launch calibration of 
the sensor measured signal - an important issue as water bodies generally reflect low levels of 
incoming light and thus a high level of accuracy is required. All these requirements are summarized 
in the proposed schematic outline of what an end to end simulator of such a dedicated aquatic 
ecosystem sensor should look like if the recommendations of this report are taken up. 

Chapter 4 considers what would need to be done once we do have a dedicated aquatic ecosystem 
earth observing satellite mission (which may be composed of multiple satellite sensors). Chapter 4 
focuses on the relevant earth observation enabling activities such as water quality, bathymetry and 
benthic mapping methods and algorithms; the various corrections that need to be applied to TOA 
data from satellites; the required in situ instruments for parameterizing the algorithms, as well as 
validating the earth observation derived aquatic ecosystem variables. A general discussion on 
sources of uncertainties, recommended field campaigns and a brief discussion of interdisciplinary 
science and application studies that can be performed once the earth observing data has been 
processed to its most definitive informative state. 



29 
 

Chapter 5 provided a succinct summary of the recommendations for a dedicated (suite of) aquatic 
ecosystem satellite sensor(s). Chapter 6 provides the literature references. 
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2 Science and applications driving sensor 
specifications 
XAVIER BRIOTTET, PETER GEGE, KEVIN R. TURPIE, ARNOLD G. DEKKER, NICOLE PINNEL, SINDY STERCKX, 
THOMAS HEEGE, MAYCIRA COSTA, VITTORIO E. BRANDO, CLAUDIA GIARDINO, FEDERICA BRAGA AND 

STEEF PETERS 

2.1 Introduction to the science and applications questions 
In Chapter 1 we introduced the necessity for society to be able to detect, monitor and assess the 
biogeochemistry of inland, estuarine, deltaic and near coastal aquatic ecosystems as well as to map 
macrophytes, macro-algae, seagrasses, coral reefs and shallow water bathymetry.  

To understand and evaluate the anthropogenic and natural effects on aquatic ecosystems, it is of 
importance to improve our knowledge on a local to regional to global scale. Due to the large 
diversity of such systems, their large extension and their rapid temporal evolution, remote sensing 
may be an efficient tool for improving our understanding of coastal and inland aquatic processes 
through detection and quantification of aquatic environmental variables and their change. Together 
with process based understanding of these environments or habitats it may become possible to link 
these changes to causes providing management relevant information. 

For Earth observation to be able to play this role, the following general science questions provide 
guidance towards these goals (modified after Turpie et al., 2015): 

SQ-1. What are the distribution, abundance, function, and state of biodiversity for coastal and inland 
aquatic ecosystems on regional and global scales? At what rate are theses quantities changing and 
what factors are driving their change? 

SQ-2. What are the biogeochemical fluxes across the boundaries between land, water, and air; how 
are they changing? What are the reasons for these changes? 

SQ-3. How are these changes interconnected? What are the consequences to important ecological 
resources, e.g., fish stocks and water quality and availability?  

For each of these questions, Earth observation needs to provide information for:  

Continental (fresh water) habitats: inland waters (lakes, reservoirs, rivers, ponds, wetlands etc.) with 
phytoplankton and aquatic macrophytes, benthic and pelagic fauna. 

Coastal (brackish – salt water) habitats: estuarine, deltaic and lagoon waters with phytoplankton, 
seagrasses and coral reefs, kelp, benthic flora and benthic and pelagic fauna (bathymetry is an 
important variable in shallow waters). 

For successful remote sensing of aquatic ecosystems it is important to realise that the atmosphere 
and water interface are part of the measured signal and thus need to be characterised, to be able to 
correct for these effects. 
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§ 2.2 will discuss the scientific and application questions related to each of the above applications. 
The essential variables to be estimated from space remote sensing will be listed in the science and 
applications traceability matrix (see Appendix A.1).  The method to measure these essential variables 
are then described in § 2.3 including mission requirements in terms of spectral range, intervals and 
spectral resolution, radiometric sensitivity, spatial resolution and geometric (geolocation, swath 
width etc.) specifications and temporal resolution requirements. To adequately correct for the 
aforementioned atmospheric (including adjacency) effects and the air-water interface the space 
sensor also needs to address specific requirements. In § 2.4 a suitability assessment of past, current 
and near-future earth observing sensors is presented in table format to provide a quick overview of 
where current and planned and funded future sensors do and do not meet the requirements set in 
the previous sections.  Although a dedicated (suite of) aquatic ecosystem multispectral or imaging 
spectrometers is a desirable outcome, it is also practical to see whether modest changes to planned 
future multispectral sensor systems for land and for ocean could provide partial solutions to 
improved assessment of aquatic ecosystems. Therefore § 2.5 includes modifications to planned 
ocean and coastal colour sensors. 

2.2 Science and applications questions per aquatic ecosystem 
This section describes the essential variables which can be estimated from remote sensing to 
characterize each application for non-oceanic aquatic ecosystems. 

2.2.1 Inland waters ecosystems 
From a societal point of view, inland water bodies are vital for recreation, food supply, commerce, 
human health, urbanization, tourism, transportation, industry, fish farming and drinking water 
supply whilst environmentally they support habitats for a large floral and faunal diversity. Currently, 
these ecosystems experience high pressure from increasing social and economic human activities as 
well as climate change. As sinks for pollutants, freshwater ecosystems are among the most sensitive 
indicators of environmental impacts related to human activities (UNEP, 2012). For example, a major 
global ecological problem is the increasing eutrophication, pollution and loading with sediments of 
inland water bodies caused by fluvially transported substances such as phosphate and nitrogen 
compounds as well as eroded soil and creek and gully embankments which derive from intensified 
agricultural and industrial activities, including mining. Monitoring and managing the water quality of 
freshwater habitats is therefore necessary. E.g. according to the EU Water Framework directive 
2000, specified biological, hydro-morphological and physio-chemical parameters of water bodies 
should be monitored on a regular basis. Similar requirements exist across the globe. 

The global abundance and size distribution of lakes was recently reported by Verpoorter et al., 
(2014) using analysis based on Landsat imagery. This work quantified the number and surface areas 
of the world lakes larger than 0.002 km² (0.2 ha).  Andreadis et al., (2013) reported estimates of 
global river width, depth and discharge using a combination of Landsat image analysis and 
hydrologic modelling. Using these datasets, an estimate is derived for the total number of lakes and 
rivers that are globally resolvable by different sensor spatial resolutions, where a lake is resolved if a 
3 x 3 contiguous array of lake pixels, not affected by any land spectra, can be collected. The majority 
of lakes globally occur in size classes less than 1 km2. While there are fewer number of lakes in size 
classes greater than 1 km2, they contribute a substantial portion of the total surface area covered by 
lakes. Therefore, in theory, about 60 % of the world’s surface lake area can be resolved with a sensor 
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ground sampling size (pixel size) GSD of ~333 m (Table 2.4). This is the equivalent of a sensor with 

MERIS/S3-OLCI/OCM/SGLI-type resolution. If smaller lake classes are included, nearly 80 % of the 

global lake surface area be viewed with a sensor with a GSD of 105 m, whereas 100 % of the global 

lake area of lakes 0.2 ha or larger can be resolved with 15 m spatial resolution (e.g., Sentinel-2 type 

sensor resolution which has 10m, 20m and 60 m bands). Thus, we estimate that a Landsat resolution 

sensor (30 m multispectral bands and 15 m panchromatic) available since 1984 can detect 

approximately 27 million lakes worldwide, or more than 90 % of the global lake (larger than 0.2 ha) 

surface area. See paragraph 2.3.3 for more detailed information. 

 

Whereas conventional monitoring approaches tend to be limited in terms of spatial coverage and 

temporal frequency, remote sensing has the potential to provide an invaluable complementary 

source of spatial data at local to global scales. Furthermore, as sensors, methodologies, data 

availability and the network of researchers and engaged stakeholders in this field develop, 

increasingly widespread use of remote sensing for operational monitoring of inland waters can be 

envisaged (Palmer et al.,2015). Systematic examples of truly operational monitoring of inland water 

quality beyond that applied to single water bodies are sparse, reflecting the challenges in applying 

simpler empirical and semi-empirical algorithms. Olmanson et al., (2008) compiled a comprehensive 

water clarity database assembled from Landsat imagery over 1985–2005 for over 10,500 Minnesota 

lakes larger than 8 ha in surface area, on the basis of empirical methods using citizen science 

approaches. This study highlighted the geographic patterns in clarity at both individual lake and eco-

region level linked to land use. Such an approach requires significant interaction and investment 

with the local communities. 

Several researchers have developed algorithms to quantify various optical water quality parameters, 

including chlorophyll-a, suspended matter, coloured dissolved organic matter, dissolved organic 

carbon concentration and water transparency measures such as vertical attenuation of light, Secchi 

disk transparency and turbidity (Dekker et al.,, 2001; Park and Latrubesse, 2014; Gilerson et al., 

2010; Giardino et al., 2007; Gitelson et al., 2007; Kallio et al., 2001). Moreover, phytoplankton 

taxonomic groups can be identified, which provide indications for the occurrence of harmful algal 

blooms, e.g. cyanobacteria (Simis et al., 2007; Bracher et al., 2009; Duan et al., 2014). Chlorophyll-a 

as one of the important water quality parameters is often used as a measure of the level of water 

eutrophication and can be used as a proxy for phytoplankton biomass in aquatic ecosystems 

(Giardino et al., 2001; Zhang et al., 2012). Accurate estimates of algal pigment concentration from 

remotely sensed data for inland and near-coastal waters however are challenging due to their 

optical complexity and there being many smaller or narrower water bodies requiring smaller pixel 

sizes.  

Algorithm development to allow application beyond single inland water bodies is predominantly 

being addressed in research projects targeting larger lakes using low spatial resolution ocean colour 

sensors (e.g., GLaSS and GloboLakes projects) and smaller lakes using terrestrial sensors such as 

Landsat and Sentinel-2 (Lymburner et al., 2016). 

2.2.2 Wetlands ecosystems: macrophytes 
Apart from water quality wetland ecosystems are important for their macrophytes. Macrophytes link 

the sediment with the overlying water. They are beneficial to lakes because they provide habitat for 

fish and substrate for aquatic invertebrates, offering protection against both currents and predators. 
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Macrophytes also produce oxygen via photosynthesis, which assists with overall lake functioning, 
and are an important food resource for some fish and other wildlife (Jeppesen et al., 1998). Lakes 
with water plants thus have high ecological value. Because of specific growth requirements, 
macrophyte species tend to reflect the physical and chemical (nutrient) conditions of the lake in 
which they occur (Sondergaard et al., 2010). Thus, the composition of macrophyte species in a water 
body makes it possible to draw conclusions about local chemical and physical conditions. Aquatic 
macrophytes have several advantages which make them attractive as limnological indicators, as 
opposed to other algae (diatoms) or macroinvertebrates. They are especially sensitive to changes 
(increases) in nutrient concentrations (notably phosphorus and ammonium) and to organic 
pollutants and can be used as long-term indicators, as they change slowly and progressively. 
Secondly, submerged macrophytes are rooted; therefore, they reflect the nutrient status of their 
immediate habitat by their presence/absence and abundance. Thus, they can indicate patterns of 
nutrient concentration, e.g. caused by natural or artificial inflows. An additional advantage which 
makes them attractive to remote sensing applications is that they can generally be seen and 
identified to the species level at the sampling site.  

Macrophytes may be separated into three remotely measured groups, based upon their principal 
growth habits—submersed, floating-leaved, and emergent. The mapping of species by growth habit 
using both airborne and satellite data can be done reasonably accurately (Malthus and George, 
1997; Hunter et al., 2010; Tian et al., 2010, Pinnel 2007). Routine mapping of the biophysical 
parameters of macrophytes will have value in assessing cover and the effectiveness of management 
practices for controlling excessive aquatic plant growth.  

Several remote sensing techniques are used to characterize macrophyte habitats: Synthetic Aperture 
Radar (SAR), passive optical and nearby infrared data and LIDAR. SAR has been used to map wetland 
extent and emergent vegetation (Evans et al., 2010; Costa 2004) but due to the lack of penetration 
of microwaves, is not able to detect submersed macrophytes species. Further, because wetlands are 
highly spatially heterogeneous, the coarse spatial resolution provided by most publicly available SAR 
systems also limits their ability to successfully discriminate wetland plant species from space. Table 
2.7 highlights the abilities of current and future optical sensors for differentiation of the different 
macrophyte growth habits. In addition to providing valuable habitat to multiple freshwater 
ecosystem species, emergent wetland vegetation has extremely high rates of net primary production 
and evapotranspiration (ET), drives a large portion of wetland carbon formation and storage, and 
plays an important role in wetland sediment stability and accretion (Byrd et al., 2014; Zhou and 
Zhou, 2009). Floating and submerged plants provide important structuring for freshwater 
ecosystems, influencing the physical and chemical environment and food web (Liu et al., 2013; 
Meerhoff et al., 2003; Santos et al., 2011; Vanderstukken et al., 2014).  

With respect to satellite data, the high spatial heterogeneity of macrophytes and their presence in 
relatively small water bodies and wetland areas needs to be monitored at a spatial resolution which 
is not supported by most high temporal frequency and low spatial resolution sensors (300–1000 m) 
used for terrestrial vegetation applications at global scale (e.g. Hmimina et al., 2013). Medium 
resolution EO data (10–30 m ground resolution) are the best option. A good potential for developing 
applications to map macrophytes has been shown by exploiting multi-temporal information. This is 
done largely based on reflectance values in NIR wavebands, which are much stronger from emergent 
and floating-leaved species than from the surrounding water. The straight forwardness of spectral 
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vegetation indices has long demonstrated its advantages for large scale mapping of aquatic 
vegetation (e.g. Hu et al., 2010). Villa et al., (2015) showed capabilities and performance of temporal 
series of vegetation indices in mapping wetland vegetation groups on a functional basis beyond the 
local scale. 

Hyperspectral data can differentiate several aquatic plant associations (Tian et al., 2010) and be used 
to detect submersed aquatic species, even in highly turbid environments (e.g., Hestir et al., 2008; 
2012, Santos et al., 2012), as can the use of LiDAR and textural analysis of image data (e.g., Proctor 
et al., 2013; Verrelst et al., 2009). The differentiation of species, however, currently poses a greater 
challenge. Because of the high spatial and phenological variability of aquatic macrophytes, improved 
resolution (e.g. spectral, spatial, temporal) data are needed to adequately discriminate communities 
(Klemas, 2013) and to measure biogeochemical features needed for species discrimination and 
physiological function (Ustin et al., 2004, and Santos et al., 2012). 

Although not referred to often, inland waters can be optically shallow too and then, in principle 
water depth and benthic composition can be mapped. Most likely this has not yet been done 
extensively as the water bodies with bottom visibility tend to be small or narrow and thus require 
high spatial resolution sensors. 

2.2.3 Transitional ecosystems: estuarine, deltaic and lagoon waters 
Transitional waters, as estuaries, deltas and lagoons, are situated at the land-ocean boundary. 
Depending on the tidal influence from coastal waters, but also on the freshwater influence from 
upstream, transitional waters are highly dynamic and often characterized by a typical flora and 
fauna. The transition from freshwater to marine conditions influences the distribution of suspended 
and dissolved matter, varying their concentration, size and physical–chemical composition. These 
transitional waters are important to mankind because many industrial, commercial, and recreational 
activities are concentrated in these regions (Brondizio et al., 1994; Razinkovas et al., 2008). These 
waters historically have been degraded by pollution from urban, industrial and agricultural areas and 
by land reclamation for sea defenses, building and agriculture. Management of these requires an 
understanding of the processes occurring in these water bodies (Elliott and Quintino, 2007). The 
transitional waters, due to their hydromorphology, respond rapidly to changes in forcing and are 
therefore characterized by wide temporal and spatial fluctuations in environmental variables 
(Newton and Mudge, 2005; Viaroli et al., 2007; Tagliapietra et al., 2009; Kuenzer et al., 2017). 

Remote sensing can be a relevant, effective way of monitoring coastal transitional environments: 
the derived geospatial products typically include the same water column constituents as for inland 
waters but with the addition of water depth and benthic composition in the case of optically shallow 
waters. The new generation of high spatial resolution satellites (e.g. Landsat 8 and Sentinel 2) is 
providing a relevant contribution for coastal, inland and estuarine water applications (Concha and 
Schott, 2016; Toming et al., 2016; Brando et al., 2016). Moreover, modern experimental space-borne 
hyperspectral sensors along with airborne imaging spectrometry show an increasing capability for 
assessing optical properties and water components of transitional and coastal waters quality (Braga 
et al., 2013; Dekker et al., 2011; Gitelson et al., 2011; Lee et al., 2007; Santini et al., 2010) and for 
preliminary testing to design satellite-based systems (e.g., PRISMA, EnMAP, HyspIRI) (Hestir et al., 
2015). Most of the applications were derived with physics-based (bio-optical model) inversion 
techniques or semi-empirical algorithms. For the physics-based inversion methods and for training 
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ANN and ML methods, a comprehensive bio-optical data set of the regional and temporal variability 
in optical properties and biogeochemical quantities is recommended (Aurin et al., 2010; Blondeau-
Patissier et al., 2009; Brando et al., 2012). 

2.2.4 Shallow coastal ecosystems: seagrasses and coral reefs, macro-algae 
In shallow coastal waters, corals, seagrass and macro-algae habitats (e.g. kelp) provide important 
ecosystem services, both individually and through their functional linkages. Coral reefs are widely 
recognized as a valuable resource for tourism, fisheries and local economies but are susceptible to 
large-scale processes, such as rising ocean temperatures, acidification, changes in ocean water 
biogeochemistry, anthropogenic effects and competition by invasive species (LeDrew et al., 2000; 
Riegl et al., 2009). 

Seagrass meadows play an important role in providing nursing and feeding habitats for many 
commercially and recreationally important fish species (Short et al., 1999; Ferwerda et al., 2007). 
These plants regulate the water quality of the water column as well as stabilize the bottom 
sediments. Changes in the distribution and structure of seagrass communities have impact on local 
and regional biodiversity, nearshore geomorphology and biochemical cycles. Canopy forming kelp 
beds play vital roles as a source of diet, shelter, and recruitment for multiple species including fish 
and invertebrates (Bennett and Wernberg, 2014) as well as ecosystem services such as carbon 
fixation and nutrient production and baffling currents and protecting the shoreline from erosion 
(Schaefer et al., 2015). At local scales, seagrass abundance and distribution loss happens due to 
overgrazing by sea urchins or severe storms (Byrnes et al., 2011), but are more likely to occur on a 
broad scale due to anthropogenic pressures such as pollution, nutrient overload, heavy suspended 
sedimentation, coastal development, and warming and acidifying waters caused by climate change. 

In this context, remote sensing can obtain unique spatial and temporal information about these 
habitats (Dekker et al., 2006). Providing baseline estimates of the current extent, diversity and 
condition of seagrass meadows and coral reefs will enable the establishment of monitoring 
programs designed to detect disturbances at an early stage. 

Medium spatial resolution Landsat imagery has been used to support shallow-tropical benthic 
habitat mapping both at the local scale (e.g. Marsa Shagra in the central Egyptian Red Sea, Purkis et 
al., 2004) and at a wider region scale (e.g. the Caribbean see Wabnitz et al., 2008). Similarly, medium 
resolution SPOT imagery (Cavanaugh et al., 2010; Casal et al., 2011) and high spatial resolution 
WorldView 2 and SPOT 6 imagery (O’Neill and Costa, 2015) have been successfully used for locally 
mapping giant kelp and bull kelp beds, respectively. 

Seagrass and corals have been estimated from remote sensing with a variety of techniques, which 
includes classification techniques (Leiper et al., 2014), spectral inversion of bio-optical modelling 
(Dekker et al., 2011), and an assemblage of those methods (Purkis et al., 2004). Dekker et al., (2011) 
provided a comparative study of spectral inversion methods applied to airborne hyperspectral data 
for a Caribbean coral reef area and an Australian embayment. The results overall provided 
moderately accurate simultaneous retrievals of bathymetry, water column inherent optical 
properties and benthic reflectance in waters less than 13 m deep with homogeneous to 
heterogeneous benthic/substrate covers. 
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The spectral and spatial resolution of a sensor will determine which aspects of a habitat can be 
mapped (Mumby and Harborne, 1999). A coarse spectral/spatial resolution may be sufficient to 
differentiate coral reefs from seagrass beds while finer resolution may be needed to differentiate 
coral species and seagrass densities (e.g. Mumby et al., 1997). Multispectral satellite data has been 
used to produce maps of coral reef systems (Purkis et al., 2004; Yamano and Tamura 2004) and 
seagrass meadows (Dekker et al., 2005; Wabnitz et al., 2008). However, the spatial resolution of the 
sensor plays a key role in classification accuracies achieved for highly heterogeneous coral reef 
environments (Andrefouët et al., 2003). To accurately map changing coral cover over time, 
hyperspectral and very high spatial resolution sensors are required (Kutser et al., 2003; Hochberg et 
al., 2003; Phinn et al., 2008; Lim et al., 2009, Leiper et al., 2012). 

An optical sensor’s ability to identify floating kelp beds relies on the high near-infrared reflectance 
from the floating kelp, due to the interaction of light within the internal cellular structure of floating 
bulbs and fronds, in contrast with the very low NIR reflectance due to light absorption by the 
surrounding waters. The visible spectra also play an important role in the detection of kelp as a 
result of the characteristic reflectance peak in the green and red wavelengths due to the presence of 
chlorophyll-a and fucoxanthin, respectively (Cavanaugh et al., 2010; O’Neill and Costa, 2015). 
Submerged macro-algae can also be mapped from space using Landsat TM data as illustrated in 
Dekker et al., (2005). 

2.2.5 Shallow water bathymetry 
Bottom visibility provides challenges and opportunities to remote sensing of optically shallow 
waters. Fine scale data to determine near coast or coral reef bathymetric characteristics, especially 
at depths less than 20 m, are often required for a variety of uses (science, ship navigation and 
resource management). However, when mapped with traditional ship based methods using echo 
sounding, water depth measurements are costly and time consuming and might not be practicable 
at very shallow conditions. Moreover, in coastal and inland areas the variation of depth in time and 
space can be quite high and need regular updating; for instance, the seasonal strength of longshore 
currents often alters sediment movement, storms and currents may increase erosion, resuspension 
or sedimentation processes, and heavy rain events can increase drastically the input of sediments 
from rivers and lead to a short-time redistribution of the sediment bed of estuaries.  Earth quakes 
can cause significant changes in shallow water bathymetry. 

Remote sensing therefore provides an opportunity for gap filling (Gao, 2009; Pleskachevsky et al., 
2011) or remote area mapping of water depth. Three methods exist for mapping bathymetry from 
airborne or spaceborne platforms: non-imaging LiDAR that uses timing to measure a laser based 
return signal from the air water interface versus the return signal from the bottom to calculate 
depth; imaging SAR that images surface wave patterns and infers bottom geomorphology from 
current driven changes and passive optical multi or hyperspectral imaging that analyses the light 
spectrum modification as it passes through the water body to the benthos and back again.  Satellite 
based imaging represents a reasonably accurate and cost effective technology for fine scale mapping 
of near coast or reef bathymetric characteristics. Multi-spectral (e.g. Landsat-8; Sentinel-2) and 
commercial very high spatial resolution multispectral sensors (e.g. WorldView 2 and 3, RapidEye that 
measure the entire spectrum from ~ 400 to 800 nm in broad contiguous bands) offer an operational 
alternative for regional scale water depth mapping. Hyperspectral remote sensing provides 
improved estimates of water depth because water attenuates the signal from the bottom with a 
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strong wavelength dependency. Moreover, the signal from heterogeneous substrates might be 

spectrally complex and hyperspectral data provide more information for decoupling the remotely 
sensed signal from shallow waters (Lee et al., 2005, Botha et al., 2013) and down to greater depth 

(Botha et al., 2013). 

2.2.6 Atmospheric and water interface  
The signal measured by a satellite sensor is, the sum of the signal coming from a water area 

corresponding to a pixel, which has been attenuated by the atmosphere (through loss of photons 
due to absorption and scattering) and an additive radiative component due to the atmospheric 

scattering from adjacent areas into the field of view of that pixel. The total sensor-reaching radiance 

is mostly comprised of the atmospheric signal, i.e., > 90 % for low reflecting water bodies, which 
makes the removal of this signal a crucial step for the retrieval of biogeochemical properties (Gordon 

1997). This relative atmospheric contribution in the blue significantly increases over CDOM-rich and 

organic matter rich  but mineral suspended matter poor waters, i.e., boreal aquatic systems (Wang 
2010), as CDOM and organic particulate matter absorb light significantly in the blue decreasing 

towards the  green and yellow wavelengths. The atmospheric effects along the total path sun-

atmosphere-target-atmosphere sensor are due to light absorption and (back) scattering. The 
absorption by gases induces strong absorption bands caused by the type of gas. As shown in Figure 

2.1, the main absorbing gas is water vapour and then by order of importance ozone and dioxygen. It 

has been recently shown that industry or urban areas can produce nitrogen which has to be taken 
into account as well. As an example, at 0.4µm, the NO2 transmission ranges from 0.985 to 0.995, 

inducing a possible error of 10-20 % on the retrieved water reflectance at some wavelengths. The 

strength of the absorption depends on the gas concentration. Gas also attenuates the radiation 

along the path by scattering.  

 

Figure 2.1 Transmissions of atmosphere gas (from Gao et al., 2009) Note that the wavelengths of interest for 
this study occur in the 0.38 to 1.00 micron area (380 to 1000 nm) 

In addition to gaseous absorption, air molecules contribute to a significant amount of scattering, 
increasing the total measured signal across the spectrum in particular towards the blue and ultra-

violet regions. Its impact within the blue portion of the spectrum follows a λ-4 law. Aerosols can 

absorb but also scatter a signal along its path. Its attenuation will depend on the aerosol type and its 
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abundance. Aerosols exhibit strong variations in time and space (Remer et al., 2005) especially over 
land-water boundaries. The removal of the aerosol scattering contribution (see Ch. 4) present over 
inland, coastal and coral reef waters remain one of the most challenging tasks in the atmospheric 
correction process.  

Another challenge is quantifying the reflected signal contributions from surrounding non-water 
areas, i.e., land (vegetation, soils, beaches, coral islands) or ice. Due to their proximity to water 
surfaces, land or ice masses contribute to the total radiance budget reaching the sensor, especially if 
the scattered light from these high reflecting non-water targets change direction and seem to be 
coming from the water pixels. These contributions, called adjacency effects, cannot be neglected 
over a water body, particularly when an aquatic target pixel is adjacent to highly reflective pixels 
often associated with significant topographic features. The additive radiative component has several 
origins, where their relative contributions depend on the atmosphere composition, the spectral 
range and the environment of the targeted (water) and adjacent (vegetated or bare land, white 
sands or coral sands or ice) surfaces. They are the atmospheric upwelling radiance, the environment 
upwelling radiance and the surface-atmosphere coupling radiance referred to as adjacency effect. 
The relative contribution of these two last components cannot be neglected over water and needs 
careful estimation (Santer and Schmechtig, 2000; Bulgarelli et al., 2014).  

To achieve a proper retrieval of the aquatic ecosystem surface reflectance (Rrs), it is thus necessary 
to measure or estimate the surrounding terrestrial reflectance as well as the atmospheric 
composition. § 2.3 explores the specific measurement requirements in more detail. 

2.3 Measurement requirements (based on bio-optical or RTF based 
forward models)   
A sensor system on a satellite platform for aquatic applications has to provide, in summary,  data for 
environmental baseline reporting (environmental status), monitoring  extreme events (algal blooms, 
river plumes, oil spills, floods) and providing  time series of environmental information for assessing 
environmental condition and trend. These measurements provide management relevant 
information. These measurements from space will often be under sub-optimal conditions due to 
atmospheric composition, air-water interface effects, polarization, clouds and related shadows etc.  

The accuracy at which an unknown parameter can be determined from a multi- or hyperspectral 
image depends on sensor properties, illumination conditions and optical properties of the 
environment, and the retrieval algorithm. For HICO, the first experimental spaceborne hyperspectral 
sensor (on board of ISS) designed specifically for coastal systems, the impact of sensor noise on the 
accuracy of chlorophyll-a, total suspended matter and CDOM concentration has been studied by 
Moses et al., (2012) for lake-typical concentrations and three retrieval algorithms. Assuming a 
perfectly calibrated instrument and an error-free atmospheric correction, they found that just 
sensor noise can introduce errors as high as 80 % in optically complex waters. A subsequent study 
(Moses et al., 2015) indicated that these errors might be reduced by 50 to 92 % by increasing 
instrument sensitivity by changing the objective's F-number from 3.5 (HICO) to 1.0 (fictive sensor). 
Such direct back-tracing of instrument requirements to the accuracy of constituent retrieval can be 
done for a limited number of cases (as in Appendix A.2.), but it cannot cover the entire range of 
water types, error sources and retrieval algorithms.  
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As there exist numerous retrieval algorithms and strategies to handle ill-posed problems caused by 

the non-uniqueness of the optical properties, and as it is difficult to assess propagation of systematic 

errors arising from calibration and atmosphere correction, an alternate strategy is chosen here to 

derive measurement requirements of optically complex waters. Using bio-optical modelling we 

simulated the changes of remote sensing reflectance induced by an altered optical water quality 

variable, benthic variable or water column depth of interest for a wide range of environmental 

aquatic ecosystem conditions. We then translated these reflectance changes to space borne sensor 

requirements such as spectral intervals and spectral resolution and radiometric sensitivity. The 

remote sensing reflectance or radiance (=reflectance or radiance emanating from the water body) 

needs to be transported through the atmosphere to the satellite sensor providing top of atmosphere 

simulations, thereby adding spectral and radiometric requirements. Together these simulations will 

provide the required signal to noise ratio (SNR) of the sensor. SNRs are however dependent on the 

ambient light field (e.g. low sun angles early in the morning and/or at high latitudes versus high sun 

angles at noon or at low latitudes) and we therefore also discuss the noise equivalent radiance 

differences (NE∆L) and noise equivalent reflectance differences (NE∆R) (see Wettle et al., 2004 for 

definitions) as they are more relevant for designing an appropriate sensor. 

After determining these spectral and radiometric specifications we focus on the spatial resolution 

and geometric accuracy requirements; temporal resolution requirements and the atmospheric, 

adjacency effect and air-water interface correction requirements. 

2.3.1 Bio-optical simulations of remote sensing reflectance and water leaving 
radiance 

2.3.1.1 Theory 
WASI-2D (Gege, 2014) is an image processing software for multi-and hyperspectral data from deep 

and shallow waters. It has been developed for inverse modelling of atmospherically corrected data 

from airborne sensors and satellite instruments and supports radiance as well as reflectance spectra. 

The executable program including user manual can be downloaded from the IOCCG website (IOCCG, 

2013a), the source code can be obtained from the author on request. As WASI has been designed for 

accurate analysis of regional data by experienced users, but not for automated processing of large 

datasets covering a wide variety of optical properties, it is intended primarily for research and 

educational purposes. For the purpose of this study WASI was reparametrized with more detailed 

bio-optical variables. 

The reflectance of water depends on the spectral absorption coefficient,𝑎𝑎(𝜆𝜆), and spectral 

backscattering coefficient, 𝑏𝑏𝑏𝑏(𝜆𝜆), of the water layer. The most relevant components contributing to 

𝑎𝑎(𝜆𝜆) and 𝑏𝑏𝑏𝑏(𝜆𝜆) are: pure water (index "W"), phytoplankton (index "p"), coloured dissolved organic 

matter (index "CDOM") and non-algal pigmented particles (index "NAP"). Their absorption and 

backscattering coefficients are so-called inherent optical properties (IOPs), which are additive: 

𝑎𝑎(𝜆𝜆) = 𝑎𝑎𝑤𝑤(𝜆𝜆) + 𝐶𝐶𝑝𝑝 ∙ 𝑎𝑎𝑝𝑝 (𝜆𝜆) + 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ∙ 𝑎𝑎𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝜆𝜆) + 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 ∙ 𝑎𝑎𝑁𝑁𝑁𝑁𝑁𝑁(𝜆𝜆), (1) 

  

𝑏𝑏𝑏𝑏(𝜆𝜆) = 𝑏𝑏𝑏𝑏,𝑤𝑤(𝜆𝜆) + 𝐶𝐶𝑝𝑝 ∙ 𝑏𝑏𝑏𝑏,𝑝𝑝(𝜆𝜆) + 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 ∙ 𝑏𝑏𝑏𝑏,𝑁𝑁𝑁𝑁𝑁𝑁(555) ∙ �
𝜆𝜆
555�

−𝑛𝑛
. (2) 
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The C's are the concentrations, and the star symbol indicates normalization to concentration (for 
phytoplankton and NAP) or wavelength (for CDOM). The normalized IOPs are called specific inherent 
optical properties (SIOPs).  

All calculations are made with the software WASI 2-D. These simulate measurements of remote 
sensing reflectance Rrs, which is the ratio of upwelling radiance to downwelling irradiance, both 
above the water surface and excluding specular reflections at the surface. The model of Albert 
(Albert and Mobley 2003, Albert 2004) is used for the simulations, which expresses Rrs as a 
polynomial of fourth order of the quantity 

𝑢𝑢(𝜆𝜆) = 𝑏𝑏𝑏𝑏(𝜆𝜆)
𝑎𝑎(𝜆𝜆) + 𝑏𝑏𝑏𝑏(𝜆𝜆)

 (3) 

 

The model can be used for optically deep and shallow waters and accounts for the sun zenith angle 
and the viewing angle. Its coefficients have been derived using Hydrolight (Mobley, 1994) 
simulations covering wide ranges of environmental parameters, including most of the high 
concentrations observed in inland waters. 

More details are given in Chapter 2  

2.3.1.2 Radiometric sensitivity (NE∆R, NE∆L and SNR) 
There are 3 ways to describe the required or measured sensitivity of an earth observing sensor 
(Wettle et al., 2004): the noise equivalent reflectance difference (NE∆R), the noise equivalent 
radiance difference (NE∆R) and the signal to noise ratio (SNR). The exact definitions are presented in 
the Ch2 Appendix.  From a sensor design point of view the NE∆L is the most important as that value 
is translatable to the amount of photons at a specific wavelength that the sensor optical device 
registers. NE∆L of a sensor is independent of the ambient light field. NE∆R is the noise equivalent 
reflectance (usually remote sensing reflectance, occasionally subsurface irradiance reflectance). The 
attractiveness of the NE∆R approach is that once an image or a suite of images or an entire archive 
of images is processed to remote sensing reflectance values a single algorithm can be applied giving 
consistent results (as there are no variations due to sun angle, atmospheric condition, sensor look 
angle etc.). However if we take the example of a northern hemisphere boreal lake at 60° latitude in 
winter or a tropical lake at 0° in spring the radiance (L) returning from each water body will be vastly 
different (much less photons impinging on the water body and thus being reflected from within the 
water body) whereas (if the optically active constituent concentrations are the same) the reflectance 
will be the same. 

In a similar fashion the signal to noise (SNR) ratio is often used to depict the sensitivity of a sensor. 
However SNR is dependent on several definitions needing to be specified such as: the saturating 
signal, and a 30 % or 5 % bottom albedo in combination with a certain sun zenith angle and 
atmosphere condition, and a given TOA radiance spectrum. Another key issue is what the amount of 
radiance is that the sensor collects: in the case of the boreal lake in winter the amount of radiance 
(photons) is much lower than from the tropical lake. In this example the relationship for the SNR will 
be approximately related to the cosines of the sun angles. 
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In fact NE∆L or NE∆R are a science requirement used by industry to design the earth observing 
instrument and the initial data processing. In other words, if we want to discriminate two spectra 
characterized  by NE∆L, the sensor (characterized by its SNR) and the processing need to have a total 
noise less than NE∆L (factor 2 is a minimum). It is the ratio NE∆L/L that is related to different 
scenarios (discrimination of spectra, different atmosphere conditions, during the year and at 
different latitudes…thus several sun zenith angles) that is key to understanding an optical and 
nearby infrared earth observing sensor’s performance. Thus, although it is preferable to discuss 
sensor performance in terms of NE∆L, we also present results in NE∆R and SNR as that allows 
comparison with most of the literature on this subject. 

It should be noted that the SNR is frequently used in a confusing way. Since the SNR depends on the 
signal and the measurement noise, it specifies the quality of a measurement, but not of a sensor. 
Confusion is caused by the fact that it is common practice to use the SNR for comparing or specifying 
optical sensors, even though no common definition of the underlying signal exists. To mention a few, 
the saturating signal (usually 100 %) is sometimes taken, sometimes a 30 % or 5 % bottom albedo in 
combination with a certain sun zenith angle and atmosphere condition, and sometimes a given TOA 
radiance spectrum. This inconsistent usage of SNR makes the comparison of sensors difficult (see Hu 
et al., 2012 for a method to compare sensors with varying SNR definitions).  

Figure 2.2 illustrates the changes induced to Rrs by altering TSM from 0.2 to 10 mg/l (panel A), CHL 
from 0.2 to 5 µg/l (panel B) and the lope of the CDOM absorption SCDOM from 0.010 to 0.020 nm-1 
(panel C). A shallow water simulation is in Panel D, illustrating the changes of the reflectance 
spectrum when the bottom substrate "Posidonia australis" is submerged in water of different depth 
ranging from 1 mm to 50 cm. In each case, the altered parameter was changed in 50 equidistant 
steps, while all other parameters were kept constant. 

The largest changes in the amplitudes of Rrs are obviously introduced by changes of TSM (panel A) 
and water depth (panel D), but the spectral changes are difficult to recognize in this kind of 
representation. The spectral changes are better visible after normalization. Figure 2.11 shows the 
spectral Rrs normalized in the range from 400 to 900 nm. This normalization has least effect in the 
chlorophyll change graph (panel B) as at 550 nm chlorophyll changes have almost no effect. 



42 
 

 

Figure 2.2 Remote sensing reflectance changes for (A) TSM range 0.2 - 10 mg/l, (B) CHL range 0.2 – 5 µg/l, (C) 
SCDOM range 0.010 – 0.020 nm-1, (D) depth range 0.01 – 0.5 m with Posidonia cover of substratum 

A 

C 

B 

D 
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For deep water (panels A, B, C), the normalized spectra show much less variability than Rrs, and 
variability is now more pronounced for changes of SCDOM (panel C) and CHL (panel B) than for 
changes of TSM (panel A). The reflectance maximum remains near 540 nm for all studied conditions, 
but the spectral shape undergoes systematic modifications.  

For shallow water, Panel D illustrates the large spectral changes of remote sensing reflectance for 
water layer thicknesses between 1 mm (black) and 50 cm (red). The 1 mm case represents almost no 
water (a water depth of zero cannot be simulated for several reasons). The difference between any 
two curves corresponds to a water layer difference of 1 cm. The water not only decreases the 
amplitude of Rrs (panel D of Figure 2.2), but also changes the spectral shape markedly, which leads at 
certain spectral regions to a shift of the minima and maxima of the Rrs spectra.  

Better suited for comparing or specifying optical sensors is the noise-equivalent radiance difference 
NE∆L which is a sensor property. The summary of the results is in section 2.3.6 and the full results in 
Appendix A.2. 

Of particular relevance for defining sensor requirements are the extreme cases of the measurements 
of interest; if a sensor is suitable for the extremes, it will provide even better data in-between. This 

 Figure 2.3 Normalized remote sensing reflectance changes for (A) TSM range 0.2 - 10 mg/l, (B) CHL range 0.2 
– 5 µg/l, (C) SCDOM range 0.010 – 0.020 nm-1, (D) depth range 0.01 – 0.5 m with Posidonia cover of 
substratum. 

A 

C 

B 

D 
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concept of extremes is chosen to define the scenarios. The choice of extreme values for optically 
deep water (Table 2.1) is based on the lakes selected for the GLaSS project as these cover a wide 
range of conditions (Peters et al., 2015). Each scenario represents an extreme concentration of total 
suspended matter (TSM), coloured dissolved organic matter (CDOM) or chlorophyll-a (CHL) chosen 
close to a minimum or maximum of Table 2.1 in Peters et al., (2015). TSM and CHL are defined in 
units of concentration (g m-3, mg m-3), while CDOM is expressed in terms of absorption at 440 nm, 
aCDOM (m-1). 

Table 2.1 Scenarios for optically deep water. A scenario is defined by the extreme value of a parameter 
marked as bold. The other parameters are specified by a representative value and a representative range 
(min-max). 

The simulations for a scenario keep the extreme value constant and change a number of relevant 
model parameters within a range that is considered realistic for that scenario. As the concentrations 
of water constituents are not completely independent from each other (e.g. high CHL prevents very 
low aCDOM values as CDOM is a degradation product of phytoplankton), the parameter ranges were 
chosen with regard to the scenario-relevant lakes. The iterated model parameters include TSM, 
aCDOM, CHL, and the slope of CDOM absorption (S). 

The following settings were chosen for the simulations: 

• Phytoplankton absorption spectrum of green algae from the WASI database  
• TSM absorption is approximated by an exponential equation (typical for detritus) with slope 

0.0123 nm-1 and specific absorption coefficient 0.027 m2 g-1 (Babin et al., 2003) 
• The differences ∆Rrs x are calculated for ∆x = 0.1x, i.e. they show the change of Rrs for a 10 % 

increase of the parameter x. 
• The normalized differences [∆Rrs x ]N are calculated by dividing ∆Rrs (∆Rx) with the 

maximum of | ∆Rrs x| in the range 400 – 800 nm. 

The scenarios of shallow water are defined by the irradiance reflectance spectra of bottom 
substrate. The water is represented by the low concentrations scenario representing relatively clear 
water. The bottom substrate spectra used are from a range of aquatic ecosystems such as inland 
water macrophytes, seagrass, macro-algae, corals and various substratum types: 

 

 

Scenario X- X+ Y- Y+ C- C+ 

Extreme for  low TSM high TSM low aCDOM high aCDOM low CHL high CHL 
Example Lake Garda Lake Taihu Lake Garda Finnish lakes Italian lakes Lake Taihu 
TSM [g m

-3
] 0.1 300 1(0.2-20) 2(0.5-5.0) 1(0.2-20.0) 50(10-300) 

aCDOM [m
-1

] 0.1(0.04-2.00) 1(0.2-3.0) 0.04 10 0.1(0.04-
2.00) 

1(0.2-3.00) 

CHL [mg m
-3

] 1(0.1-10.0) 20(1-1000) 1(0.1-10.0) 5(1-10) 0.2 1000 
S [nm

-1
] 0.014 

(0.01-0.02) 
0.014 
(0.01-0.02) 

0.014 
(0.01-0.02) 

0.014 
(0.01-0.02) 

0.014 
(0.01-0.02) 

0.014 
(0.01-0.02) 
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0 Chara contraria (macrophyte) 

1 Potamogeton perfoliatus (macrophyte) 
2 Rock 

3 Bleached coral 

4 Dark silt 
5 Bright sand 

6 Yellow porites sp. (coral) 

7 Purple encrusting coralline algae 
8 Brown porites sp. (coral) 

9 Posidonia australis (seagrass) 

10 Detritus (sea-grass wrack) 

11 Ecklonia radiata (a form of kelp) 
12 Coarse coral rubble 

13 Dark sand 

The plots and results of all these simulations are shown in the Appendix A.2.  

2.3.1.3 Spectral range and resolution requirements 
A sensitivity analysis has been performed for a wide range of aquatic ecosystems (see Appendix A.2.) 

to determine the spectral range and resolution required to extract relevant information for optically 

deep and optically shallow waters from remote sensing reflectance spectra.  According to these 
simulations, the ideal sensor is a hyperspectral instrument covering the range from 380 to 730 nm at 

a spectral resolution of 5 nm or better, and the range from 730 to 860 nm at a spectral resolution 

around 15 nm. 

Only a hyperspectral sensor catches the high spectral variability in the visible with the capacity to 
discriminate the spectrally interacting water constituents and, in addition in optically shallow areas, 

water column depth and bottom substratum composition and cover types. Since the infrared region 

above ~730 nm is spectrally only influenced by particulate backscattering in the water and pure 

water absorption, the sensor could be multispectral in the infrared beyond ~730 nm. 

The minimum spectral requirements for a multispectral sensor are summarized in Table 2.2. They 

combine the recommendations of IOCCG (2012) for ocean and coastal colour satellites with the 

results of derivative analysis and sensitivity analysis from the Appendix A.2., as well as some detailed 
a priori knowledge on spectral pigment absorption features. Multispectral sensors, through their 

reduced spectral coverage, limit the separability and quantification of water constituents and 

bottom substrates. Nevertheless multispectral satellites may be a cost-effective way for providing 

significantly improved capabilities by modifying existing terrestrial focused systems such as Landsat 

and Sentinel-2 that have adequate spatial resolution. 
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1Table 2.2 Recommended minimum set of spectral bands for extracting information from remote sensing 
reflectance spectra of optically deep and shallow waters. The Table doesn't include bands required for 
monitoring of terrestrial surfaces or emerged vegetation or for correcting disturbing environmental 
influences (e.g. atmosphere, reflections at the water surface, cloud shadows-see Table 2.5). All these bands 
are suitable for assessing benthic composition, shallow water bathymetry, AOPs, IOPs and SIOPs. Note that 
for the algal pigment absorption maxima we have included reference bands for the 3 band pigment 
absorption line height approaches. Physics based spectral inversion methods do not specifically need these 
pigment reference bands but do need spectral bands where the pigments absorption effects are 
measureable. 

Centre FWHM Water quality and benthic characterisation related application  

[nm] [nm]    

+/-380 15 CDOM (Mannino et al., 2014) ; NAP;  
PFT (Wolanin et al., 2016); mycosporin-like amino acids (Dupuoy et al., (2008) 

1 

+/-412 5 to 8 CDOM (Mannino et al., 2014); PFT (Wolanin et al., 2016) 2 

+/-425 5 to 8 CDOM ; Blue Chl-a absorption reference band ; NAP; PFT (Wolanin et al., 2016) 3 

+/-440 5 to 8 CDOM (Mannino et al., 2014); Blue Chl-a absorption maximum;  
PFT (Wolanin et al., 2016) 

4 

467 5 to 8 Band required to separate Pheaocystis from diatoms (Astoreca et al., 2009); Blue 
Chl-a  absorption band reference band; Accessory pigments 

5 

+/-475 5 to 8 Accessory pigments ; Blue Chl-a  absorption band reference band ; PFT (Wolanin 
et al., 2016), NAP;  

6 

+/-490 5 to 8 Blue Chl band-ratio algorithm; PFT (Wolanin et al., 2016), Accessory pigments 7 

+/-510 5 to 8 Blue Chl band-ratio algorithm ; NAP ; 8 

+/-532 5 to 8 PFT & carotenoids (Wolanin et al., 2016); NAP 9 

+/-542 5 to 8 NAP 10 

555 5 to 8 NAP ( as most algal pigments absorptions  are low); Cyanophycoerythrin 
reference band  
PFT (Wolanin et al., 2016) 

11 

565 5 to 8 CPE in vivo absorption maximum and possibly fluorescence (Dierssen et al., 
2015) 

12 

+/-583 5 to 8 CPE and CPC reference band; chlorophylls a,b and c (Johnsen et al., 1994); CPE 
fluorescence (Dierssen et al., 2015) 

13 

+/-594 5 to 8 PFT (Wolanin et al., 2016) 14 

+/-615 5 to 8 CPC in vivo absorption maximum (Hunter et al., 2010)-avoiding chlorophyll- c 15 

624 5 to 8 CPC in vivo absorption maximum (Dekker, 1993; Simis 2007), suspended 
sediment, PFT(Wolanin et al., 2016); chlorophyll c (Johnsen et al., 1994) 

16 

631 5 to 8 PFT (Wolanin et al., 2016) 17 

+/-640 5 to 8 NAP,  CPC reference band 18 

649 5 to 8 Chl-b in vivo absorption maximum (Johnsen et al., 1994) 19 

665 5 to 8 FLH baseline (Gower et al., 1999; Gilerson et al., 2008) 20 
676 5 to 8 Red Chl-a in vivo absorption maximum (Johnsen et al., 1994)  21 

683 5  Chlorophyll fluorescence (FLH) band (Gower et al., 1999; Gilerson et al., 2008) 22 
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+/-700 5 to 8 HABs detection; NAP in  highly turbid water; reference band for 2 or 3 band Chl-a 
algorithms 

23 

+/-710  5 to 8 FLH baseline (Gower et al., 2005); HABs detection; NAP in  highly turbid water; 
reference band for 2 or 3 band Chl-a algorithms 

24 

+/-748 15 NAP in  highly turbid water (Ruddick et al., 2006) ; FLH baseline band (Gilerson et 
al., 2008) 

25 

+/- 775 15 NAP in  highly turbid water (Ruddick et al., 2006); 26 

  See table on atmospheric characterization bands for NAP relevant bands beyond 
the O2 absorption feature at 761 nm. 

 

1Notes: CPC= Cyanophycocyanin; CPE= Cyanophycoerythrin; CDOM=Coloured dissolved organic matter; NAP= non algal 
pigmented particulate matter; Chl= chlorophyll; PFT=phytoplankton functional type; FLH = fluorescence line height; Note: 
NAP, blue and red chlorophyll absorption maxima and related reference bands and HABs detection do not have literature 
references as they are ubiquitous in literature. NAP scatters and absorbs light decreasing with increasing wavelength and 
thus does not need a specific band –although 3 bands without too much algal pigment or CDOM absorption are useful; The 
blue chlorophyll absorption band is centred around 438-443 nm in vivo; the red chlorophyll band around 676 nm in vivo. 
HAB’s need estimation of Chlorophyll, CPE, CPC and any other accessory pigments where possible. 

The wavelength positions in  are a compromise between desired NE∆L, NE∆R, SNR, required spectral 
bandwidth as well as being able to have adjacent spectral bands suitable for distinguishing one or 
more variables that do not overlap.  

In Lee et al., (2014) a study was performed for ocean and coastal water colour that used 5 nm 
contiguous bands over 400 to 700 nm to estimate whether a multispectral band set could sufficiently 
represent this full spectral band set. Their analyses found that 15 spectral bands of ~ 10 nm wide is 
sufficient for a chlorophyll range of ∼0.02 to >100 mg m−3, bottom depths from ∼1 m to >1000 m 
(note by editors: simulating to 1000 m deep is irrelevant as the maximum depth from which a signal 
is retrieved in natural waters is about 40 m in the clearest oceanic waters), and bottom substrates 
including sand, coral reef, and seagrass. These authors do state that these results apply: ‘provided 
that the focus of remote sensing is the primary variables instead of subtle spectral features’. Sun et 
al., (2015) repeated the Lee et al., (2014) study for set of optically deep hypertrophic lakes and 
reached similar conclusions with the exception of chlorophyll fluorescence contributing to the 
relatively lower spectral interdependence near 700 nm than at other visible wavelengths. They 
suggest that for sensor design, more spectral bands are required around 700 nm than in other visible 
wavelengths. 

A FWHM for all bands could also be 5 nm as recommended from our simulations and by 
Vandermeulen et al., (2017), however, that reduction from 8 nm to 5 nm would also reduce the 
sensitivity by approximately 38 %. Vandermeulen et al., (2017) obtained spectra from a variety of 
water types (turbid river filaments, coastal waters, shelf waters, a dense Microcystis bloom, and 
oligotrophic waters), as well as individual and mixed phytoplankton functional types (PFTs; diatoms, 
eustigmatophytes, cyanobacteria, coccolithophores). Results show that a continuous spectrum of 5 
to 7 nm spectral resolution is optimal to resolve the variability across mixed reflectance and 
absorbance spectra.  

Research by Wolanin et al., (2016) on assessing Phytoplankton Functional Types (PFT’s across 
diatoms, coccolithophores, dinoflagellates, chrysophytes, prasinophytes and cyanobacteria) showed 
that compared to multispectral bands, the continuous hyperspectral data usually yielded the best 
results. They also found that a small improvement was obtained for increasing the resolution of 
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hyperspectral from 10 nm to 5 nm, but no significant improvement was obtained for increasing 
resolution from 5 nm to 1 nm. For Trichodesmium Dupouy et al., (2008) determined a specific suite 
of pigment absorption linked to the Trichodesmium pigmentation: at 380 nm (MAA’s =mycosporin-
like amino acids, 438 nm (CHL), 470 nm (carotenoids), 495 nm (phycourobilin, PU), 547 nm 
(phycoerythrobilin, PE), 620 nm phycocyanin, PC) and 677 nm (CHL). These values are close to but 
not exactly the same as the bands proposed here. Astoreca et al., (2009) identified the need for a 
467 nm centred band to detect and discriminate phaeocystis species. From a volume scattering 
function perspective Robertson Lain et al.,(2017) determined that the 709 nm region (carrying 
critical biomass and assemblage-related signal) is sensitive to the use of the comparative phase. 
They also confirm that the 550 to 650 nm bands contain absorption features of diagnostic accessory 
pigments useful in resolving for example, trophic status and the presence of diagnostic features of 
cyanobacteria, including phycocyanin pigment, and have previously been identified as sensitive to 
size-related assemblage variability as well. Information in these critical spectral regions is vital for 
PFT algorithm development including inversions and the retrieval of IOPs. 

In summary, the requirements from literature and from our simulations indicate that 5 nm is an 
optimal spectral bandwidth from a spectral perspective but that 8 to 10 nm is required for increased 
signal levels. As several features of atmospheric or pigment spectral absorption lie close together 
spectrally it seems that 8 nm is reasonable compromise between these conflicting requirements 
(with 10 nm width there would be overlap in many areas between spectral features that need to be 
separately determined). 

For the <380 and >748 bands a width 15 nm was chosen as there are no neighbouring essential 
bands and the sensor sensitivity in those ranges is lower due to silicon based detectors having lower 
sensitivity towards the deep blue and UV and towards the mid NIR. 

In Turpie et al., (2015) the case is made that for detecting invasive (macrophyte) species in wetlands 
hyperspectral data is required as there is no a priori knowledge of the distinguishing spectral 
features.  

This line of reasoning is also true for new algal species occurring due to eutrophication, coastal 
water acidification or water temperature changes. Another example of no a priori knowledge of the 
distinguishing spectral features feature is that of extreme waters such as acidic mining pit lakes 
(Glaser et al., 2011) , sugar mill ponds, sewage ponds etc., where water colours can vary from bright 
to dark: blue, to blue green, to green, yellow, orange, pink, red and deep red and many variations 
thereof. 

Spectral requirements 

Hyperspectral from aquatic ecosystems: 5 to 8 nm wide bands between 400 and 730 nm, with 15 nm 
wide bands from 380 -400 and from 730 to 1000 if limiting to the VIS-NIR range.  See section 2.4.5.6. 
for atmospheric and air-water interface requirements; if multispectral then: 26 bands between 380 
and 800 nm  between 5 to 8 nm wide. 

2.3.1.4 Radiometric Sensitivity Requirements (SNR and NE∆L and NE∆R)  
The radiometric sensitivity requirement for a sensor is driven by dark waters that reflect little light 
due to low concentration of light scattering particles (TSM) or high concentration of light absorbing 
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matter (CDOM or NAP with high organic matter contents). Note that phytoplankton have both algal 
pigments that lower the reflectance (E.g., Chl-a absorption peaks at 443 and 676 nm as well as 
several cyanobacterial pigment absorption peaks between 490 and 630 nm)  and algal biomass that 
increases the reflectance (and significantly so when containing gas vacuoles such as some 
cyanobacteria or coccolithopores). Absorbing water types can have remote sensing reflectance (Rrs) 
maxima below 0.005 sr-1 and Rrs minima in the order of 10-4 sr-1, and 10 % concentration changes of 
chlorophyll-a can affect  Rrs as little as 10-6 sr-1 and even below, which seems impossible to resolve 
by current spaceborne instrument at a fine spatial resolution. 

A sensitivity analysis was made to derive recommendations concerning radiometric sensitivity (see 
Appendix A.2.). It is based on simulations of Rrs for a wide range of water types and uses two 
different approaches. The first approach investigates the radiometric sensitivity required to resolve 
the spectral signature of reflectance spectra between 400 and 800 nm at a SNR of 100:1, and the 
second approach investigates the maximum changes of Rrs in the range from 400 to 800 nm induced 
by 10 % concentration changes of chlorophyll-a, TSM (~ NAP) and CDOM. Both approaches lead to 
the conclusion that most challenging is the detection of algal pigments as  CHL and CPC and CPE in 
dark water types. That means, the requirements concerning pigment detection determines the 
sensor requirements. Although it needs to be said that detecting any substance in a spectral area 
where reflectance is very low (e.g. measuring CDOM in a clear water body) will be challenging. 
Determining cyanobacterial pigments with the same accuracy as CHL will require higher radiometric 
sensitivity than for CHL as the concentration specific absorption is lower than for chlorophyll 
(Dekker, 1993). We did not simulate separate CPE and CPC SIOPs in these simulations; instead we 
used one cyanobacterial algal pigment spectrum that also contained these pigments. 

 

Figure 2.4 Maximum Rrs differences (∆Rrs) induced in the range from 400 to 800 nm by 10 % changes of 
chlorophyll-a concentration (CHL) for typical water types ("scenarios"). The variability within a scenario 
reflects typical concentration ranges of CDOM and TSM. Left: ∆ Rrs as a function of wavelength. Right: ∆ Rrs 
as a function of CHL. See Table 2.1 for scenario description X and Y. 

Figure 2.4 illustrates the impact of CHL changes on Rrs under typical conditions (see Appendix A.2. for 
definition of scenarios). The Figure shows that a sensor should be capable of resolving Rrs differences 
of about 1 × 10-5 sr-1. This allows detection of CHL differences in the order of 10 % for most of the 
considered water types and concentration ranges, but not for all. A dedicated EO sensor, that is 
sensitive to CHL change detection even under difficult conditions, should resolve ∆ Rrs of ~3 × 10-6 
sr-1. Detection of TSM and CDOM is less critical, i.e. resolving Rrs differences of 1 × 10-5 sr-1 is 
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sufficient for most conditions. However CDOM detection in absence of enough scattering material in 
the water is also unlikely as there is no signal to work with. 

2.3.2 Top of atmosphere simulations (SNR and NE∆L and NE∆R) 
To derive sensor recommendations in terms of radiometric sensitivity, top of atmosphere (TOA) 
spectral radiance was simulated for 27 water types covering a wide range of optically deep waters, 
excluding extremely dark and extremely bright waters. These 27 reflectance spectra were obtained 
by combining 3 TSM concentrations (0.5, 1.6, 5 g m-3), 3 CHL concentrations (1, 10, 100 mg m-3), and 
3 aCDOM values (1.0, 3.2, 10.0 m-1).  One SIOP parameterisation was used. TOA radiances were 
calculated for 2 sun zenith angles (10°, 70°) and 2 visibilities (10, 80 km) in the simulation a maritime 
aerosol and the U.S. Standard Atmosphere 1976 profile was used. The simulation were done for a 
nadir viewing geometry.  For each parameter combination, the radiance differences were calculated 
for 5 relative changes of CHL (10 %, 20 %, 30 %, 40 %, and 50 %). Figure 2.5. illustrates these 
simulations for the darkest considered water type (TSM = 0.5 g m-3, aCDOM = 10 m-1, CHL = 100 mg 
m-3). 

 

The TOA radiance spectra (LTOA) for the darkest water type and the 4 environmental conditions are 
shown in Figure 2.5 left. The corresponding radiance differences (∆LTOA) induced by changing CHL 
by 10 % are shown in Figure 2.5 right. While LTOA depends strongly on sun zenith angle and 
visibility, ∆LTOA is mainly affected by SZA and only little by VIS. ∆LTOA is by several orders of 
magnitude lower than LTOA and has a completely different spectral shape. In this example it is a 
peaked function with maximum near 600 nm and a width around 170 nm. Since the highest 
sensitivity of a radiance measurement to CHL is at the maximum of ∆LTOA (λ), the ∆LTOA maxima 
are taken to specify the sensor requirement for radiometric sensitivity. The wavelengths and 
induced radiance differences of these maxima are shown in Figure 2.6 for 10 % and 50 % changes of 
CHL. For comparison the sensitivity of MERIS is also shown in Figure 2.6.  

Figure 2.5 Left: TOA radiances of dark water for different sun zenith angles and visibilities. Right: 
Corresponding TOA radiance differences induced by changing CHL by 10%. 
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Low sun elevation (green dots) produces lower radiance differences than high elevation (red 
crosses). The sensitivity of MERIS prevents detection of 10 % changes of CHL in many water types for 
low sun elevation, but makes it possible in most cases at high sun elevation. A 50 % change of CHL is 
detectable by MERIS in most water types even at low sun elevation. As a conclusion from the results 
presented in Figure 2.6 and Figure 2.7 (see Appendix A.2. for details) we recommend a sensitivity of 
NE∆L = 0.010 mW m-2 sr-1 nm-1 (minimum requirement) which is slightly more sensitive than MERIS 
in the visible. It induces a sensor signal for 82 % of the studied cases when CHL changes by 10 %, but 
already for 92 % of the cases for 20 % CHL changes, and 98 % for 50 % CHL changes.  

The sensitivity to concentration is proportional to the radiometric sensitivity of the sensor. The 
optimal sensitivity is 0.005 mW m-2 sr-1 nm-1 or higher, which leads in 92 % of the studied cases to a 
detectable signal for CHL changes of 10 %, and in 100 % for CHL changes above 30 %.The radiance 
range for which such high sensitivity is required is illustrated in Figure 2.6. To cover the studied 
range of water types and environmental conditions, the sensor should not saturate up to radiances 
of 100 mW m-2 sr-1 nm-1 in the blue and 20 mW m-2 sr-1 nm-1 in the red and near infrared. 

In addition to the analyses presented here, the SNR requirements for a mission with ocean colour 
capabilities have been well documented in Del Castillo (2012). The document calls for SNRs ranging 
from 600 to 2000 within the UV, visible, and the NIR parts of the spectrum. 

Radiometric requirements 

Maximum radiances over dark water bodies: 100 mW m-2 sr-1 nm-1 in the blue and 20 mW m-2 sr-1 
nm-1 in the red. 

Maximum radiances for monitoring extremely turbid waters, bleached corals, and shallow waters 
with bright sand: 400 mW m-2 sr-1 nm-1 in the blue and 200 mW m-2 sr-1 nm-1 in the red. 

Radiometric sensitivity NE∆L: in the range 0.005 mW m-2 sr-1 nm-1 (optimal) and 0.010 mW m-2 sr-1 
nm-1. 

2.3.3 Spatial resolution and geometric accuracy requirements       
The requirements for spatial resolution across all aquatic ecosystems are quite complex. They vary 
from microscale (10’s of cms) for e.g. highly biodiverse coral reefs through to kilometre scale for the 
largest inland lakes with surface areas of 1000’s of square kilometres. For a global mapping mission 

Figure 2.6 Maximum radiance differences induced at TOA by 10 % (left) and 50% (right) CHL changes, and 
sensitivity of MERIS for comparison. 
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it is important to strike the right balance between spatial, spectral radiometric and temporal scale as 

well as data rates for direct broadcast and image processing capacity. If, as determined above we 

need high spectral (5 to 8 nm on average) and radiometric resolution as high priorities, whilst 

requiring to resolve spatial features of relevance at a global scale, it seems that the inland water 

requirements could be taken as a  lead requirement applicable the other estuarine, lagoonal, 

coastal, seagrass, macro-algal and coral reef requirements.  

 For freshwater ecosystems spatial resolution is one of the primary limiting factors in the application 

of satellite remote sensing (Ozesmi and Bauer, 2002). When considering spatial resolution 

requirements for inland water systems, the determining factor is the pixel size of the sensor system 

relative to the size of ecosystem of interest. This will vary depending on the type of system, the 

particular geometry of the feature, and the geography of the target region. 

Coastal and inland aquatic targets are composed of three primary habitat levels types: at or above 

the water’s surface (e.g., floating biota, emergent or terrestrial vegetation), the water column 

composition and the benthic environment. The dominant feature for the macrophytes, seagrasses, 

macro-algae and corals are habitats formed by key species, which require a pixel size finer than for 

water column composition of optically active constituents.  These water column features (plumes, 

eddies, blooms) typically have larger scaled features, albeit much more transient (thus requiring 

finer temporal resolution). A hard limiting factor is the size of the water body of course. If it is 

impossible to fit 3 by 3 or 4 by 4 pixels within the coast line of a water body- there will likely not be 

one valid pixel available.  Commercially available satellite data can now provide from 5 m down to 

0.34 m (panchromatic) and 1.3 m (multispectral data) e.g. Worldview 3. Therefore this study looks at 

spatial resolution of 10 m or more (because we also need high NE∆L and high spectral resolution of 5 

to 8 nm). 

The ability to resolve rivers from space requires much higher GSD than lakes. The vast majority of 

global river reaches are less than 10 m wide, requiring a sensor resolution of ~3 m (Table 2.3). Less 

than 1 % of total river reaches are resolvable at the MERIS/OLCI sensor type resolution of 300 m 

pixels, and only 12 % of all river reaches are resolvable using Landsat sensor type resolution of 30 m 

pixels. Encouragingly, more than one quarter of global river reaches are wide enough to be resolved 

from sensors (> 17 m GSD). As this study already decided that 5 to 8 nm is the desired spectral 

bandwidth and we intend to have spatial resolution greater than 10 m as well as wanting to image as 

many water bodies as possible with sufficient radiometric sensitivity, aiming for the ~17 m spatial 

resolution seems to be the best compromise. This 17 m spatial resolution is indicative and not an 

absolute value. For an actual specific sensor design it is recommended to do a more detailed end-

user requirements analysis to determine the required spatial resolution. Although we will be using 

the 17 and 33 m spatial resolution as baseline and threshold levels respectively they are meant to be 

approximately ~17m and ~ 33 m, where e.g. technological advance may allow a spatial resolution of 

10 m pixels to be possible for a global mapping mission with sufficient spectral and radiometric 

resolution.  

Due to shoreline complexity of water bodies and cloud cover, the actual number and area of lakes 

and river widths resolvable in each size class will likely be less than the estimates provided herein. 

For example Sayers et al., (2015) determined that MODIS 4-km product would be expected to 

retrieve CHL values for approximately 1000 lakes worldwide (Verpoorter et al., 2014). The use of 1 
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km MODIS imagery provides information on a substantially larger number of lakes, approximately 
19,000 worldwide; the 300 m resolution Sentinel-3 OLCI and previous MERIS data have the potential 
to map CHL distribution for lakes ≥ ~1 km², numbering approximately 170,000 in the Global Lakes 
and Wetlands Database (GLWD). Similarly, using an analysis of polygons, Hestir et al., (2015) 
determined that MERIS FR 300 m resolution is capable of observing more than 50 % of the area of 
inland waters in Europe. However, MERIS observed only a few percent of Australia’s water bodies, 
where a 30 m resolution sensor resolved less than 50 % of the area due to differences in topography 
and water body geometry. 

This demonstrates that spatial resolution requirements may differ substantially based on geography. 
However, global requirements should be prioritized over local ones in the design of an aquatic 
ecosystem earth observing sensor.  

To illustrate the importance of spatial resolution in observing tidal wetlands, a pixel size or GSD 
simulation was applied to a wetland mask to derive the percentage of pixel mixing as a function of 
resolution for a large marsh system (Turpie et al., 2015). Figure 2.8 shows the fraction of the wetland 
type that remains unmixed as the pixel size increases. Generally, 30 meters (the fourth circle) is 
where significant degradation begins to occur and beyond 60 meters the loss is substantial. 
Therefore, 60 m or coarser resolution sensors are less appropriate for mapping, assessing, or 
monitoring marshes, mangroves or similar wetland systems globally. 

Table 2.3 Ground sampling distance requirements showing the resolvable river width class and cumulative 
number of total river reaches of the world’s rivers based on spatial analysis by Erin Hestir using the Pavelsky 
et al., (2012) dataset . 

River Reach Size Class 
(width) 

Required 
GSD* 

Total number of 
reaches 

Percent of total 
reaches 

≥ 1.5 km 500 2,877 < 0.1% 
≥ 1 km 333 8,483 <1% 
≥ 0.5 km 167 35,420 1% 
≥ 0.1 km 33 382,466 12% 
≥ 0.05 km 17 766,303 24% 
≥ 0.01 km 3 2,576,452 81% 
*Calculated using a box of 3 x 1 pixels sufficient to resolve the width of the river reach  

 

Table 2.4 Ground sampling distance requirements showing resolvable size class and total cumulative 
number and area coverage of the world’s lakes larger than 0.2 ha (The lake spatial analysis was conducted 
by Mark Matthews based on assumptions using the Verpoorter et al., (2014) dataset). 

Size Class Required GSD* % Total Area Total number 
≥ 10 km² 1054 m 44 25,976 
≥ 1 km² 333 m 60 353,552 
≥ 0.1 km² 105 m 80 4,123,552 
≥ 0.01 km² 33 m 90 27,523,552 
≥ 0.002 km² 15 m 100 117,423,552 
*Calculated using a box of 3 x 3 pixels sufficient to resolve the specified lake size 
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Figure 2.7.  a) Size distribution of the world’s 
lakes, b) cumulative and total area according to 
size class of world’s lakes, c) total and 
cumulative number of global river widths by 
size class.  

a b 

c 
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The maximum coverage necessary for a coral, coastal and inland water observatory is significantly 
less than global as the ocean waters are not included, but it is spread across most of the Earth’s 
landmasses and waters near their margins (see Figure 2.9) with some corals also present in deep 
ocean environments.  

A search for estimating global surface area for inland waters, wetlands, estuaries, coastal waters, 
seagrass and coral reef extent was found to be more difficult than anticipated as definitions vary, 
may overlap or have gaps. A very approximate estimate of the worlds land and ocean area is that 
wetlands are between 1.9 to 2.3 % (Lehner and Dohl, 2014), broadly defined including ~1 % inland 
waters (Downing et al., 2006, Gong et al., 2013 and Verpoorter et al., 2014 ), estuaries about ~0.2 % , 
seagrasses and corals less than ~0.1 % each and coastal waters (up to 20 km offshore) are 1.4 %  to 
2.4% global surface (this large variance is due to the length of coastlines being subject to the level of 
detail used for tracing a coastline). Importantly it seems that the combined surface area % of these 
non-oceanic aquatic ecosystems is about ~11.1 to ~15 % of the Earth’s land surface (or 3.7 to 5.1 % 
of the total earth’s surface) equal to about 19 to 26 million km2.  We emphasize that this assessment 
is very approximate and should be verified in future. This maximum of ~ 15% of land surface area 
also means that a dedicated aquatic ecosystem medium to high spatial and high spectral resolution 
mission as proposed here in the threshold situation would only need to image and process this 
amount of surface area; in a baseline for this sensor system all terrestrial and aquatic ecosystems 

Figure 2.8 Effects of increasingly coarser resolution on pixel mixing over an example wetland. Shown 
fraction of the estuarine and marine wetland (simulated at one-meter resolution) that remains 
unmixed as a function of pixel size. 
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could be imaged as this sensor would also be highly suitable for terrestrial Earth observation 

applications. 

 

Figure 2.9 Global distributions of coastal and inland aquatic ecosystems. Red indicates regions where water 
depth is less than 50 m and where land elevation is less than 50 m. Light to dark violent gives the 
concentration of inland wetlands, lakes, rivers and other aquatic systems.  Increased darkness means 
greater percentage of areal coverage for inland aquatic ecosystems (UNEP-WCMC, 2005 a & b). 

Spatial requirements 

Global coverage: all inland wetland, estuarine, deltaic, agonal, coastal and coral reef waters with 

water depths less than ~30 m and larger than ~0.002 ha. 

Spatial resolution: ~17 m (baseline) to ~33 m (threshold). 

The geo-location accuracy may be determined by direct observation of geographic features in 

images coupled to the geometric knowledge of the instrument orientation mounted on the platform 

with respect to on board attitude control systems and pointing knowledge of the platform. A normal 

target range to be set is that the geo-location knowledge should be better than 0.5 pixels (as else 

pixel locations get confused and post flight geometric correction would always need to be applied) 

and thus preferably (Threshold)  in the order of 0.4 pixels or less in along and across track directions. 

Which equates to 0.4 * 33 = ~ 13 m for the coarser spatial resolution and to 0.4 * 17 m =~ 7 m for 

the finer spatial resolution. Baseline requirement is 0.2 pixels or less in along and across track 

directions. 

Geometric requirements  

Georeferencing: Threshold is 0.4 pixels in along and across track directions; baseline is 0.2 pixels in 

along and across track directions. 

2.3.4 Temporal resolution requirements 
For time dimension, the range is the duration over which observations are made, during a single 

mission or series of missions and resolution is the temporal sampling rate. For LEO missions, this is 

defined by the revisit period for a single satellite or constellation of satellites and swath width of an 

imager. For LEO polar orbiters sun synchronicity is possible: passing over the same area at the same 

time during the day. Other LEO orbits (such as the International Space Station) pass over the equator 
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multiple times  day in an inclined orbit that reaches about 53° North and South maximally-this orbit 

is not sun-synchronous.  For GEO orbits with the sensor stationary above fixed location on the 

equator, the temporal sampling is determined by the image collection rate. In either case, the cloud 

cover frequency and duration set a lower limit for effective sampling. Temporal sampling duration 

and resolution are important in determining whether a sensor will observe seasonal, inter-annual, or 

inter-decadal variation (i.e., tending toward studies of responses to climate change and increasing 

anthropogenic pressures or providing the ability to distinguish between periodic and secular trends). 

Episodic changes and diurnal cycles in the environment, including variation in light, temperature, 

atmospheric aerosol and cloud formation, absorbing trace gas fluxes, surface wind, mixing depth, 

current, and precipitation and watershed hydrology could influence observations of coral reef, 

coastal and inland aquatic environments. Coastal tidal waters and wetlands can be subject to a 

variation with tides, which can periodically change the flux of optically active constituents in the 

water column. LEO, sun-synchronous polar orbits used for global mapping of environments would 

sample these processes at the same time of day, only providing one point in diurnal cycles and 

aliasing the tidal signal. Either long-term time series are needs to wash out these effects or an 

~hourly observation strategy must be put into effect. Some regions near coasts will form clouds 

during the same time of day (e.g., tropics), seasonally, or over most of the year (see Figure 2.10), 

obscuring observation of all or the same interval of diurnal responses in coastal and inland aquatic 

environments. The use of models and auxiliary observations from SAR imagers (e.g., Sentinel-1) or 

surface measurements could help fill in the gaps caused by a persistently or periodically opaque 

atmospheric in the visible region of the electromagnetic spectrum but only for vegetation or related 

material that is at the surface or above the surface. 

Monitoring phytoplankton blooms or the effects of episodic river discharges requires temporal 

sampling of a few days or less. Conversely, long-term secular changes in static characteristics of 

habitats formed by foundational species (e.g., wetland and submerged aquatic vegetation and 

corals) could be satisfied with less frequent observations, provided tidal, periodic or episodic 

changes are considered. Temporal sampling of these changes can be as coarse as monthly or 

seasonal, provide they are observed under consistent conditions. However, changes in phenology 

would require several observations over short periods of time during the key phases of the growth 

cycle. Elmendorf et al., (2016) proposed that graminoïd (marshes) and trees (swamps and 

mangroves) should be sampled as frequently as once every couple of days during key stages during 

the growth cycle as part of the design work for observing phenology for the National Ecological 

Observatory Network (NEON). Thus, observing change in phenological patterns in more stationary 

communities require higher temporal observations than observing changes in distribution and 

extent. 

Preferences about the temporal frequency of information delivery can change with the aquatic 

ecosystem parameter considered and its periodic cycle if present (e.g. recurrences of algae blooms 

with seasonal conditions or growing circles of macrophytes). Conversely, preferences can be 

imposed by the possible presence of unknown and unpredictable events during periods with 

particular exploitation pressure of the water resource (e.g. bathing season, water capitation during 

the drought season, coral bleaching events).  
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Figure 2.10 Global annual mean cloud cover derived from three years (2007–09) of Envisat data. The map 

shows areas with little to no cloud coverage (blue) as well as areas that are almost always cloudy (red). West 

coasts of most landmasses and open water regions at high latitudes are prone to cloudiness around the 

year.  Data from both the MERIS and AATSR instruments on Envisat were used.   Credits: ESA/Cloud–CCIs 

http://www.esa.int/Our_Activities/Observing_the_Earth/Space_for_our_climate/Highlights/Cloud_cover 

(on 6 November 2016). 

 

Figure 2.11 Bar charts showing the temporal frequencies preferred by end-users subdivided in groups (left: 

not working or working on streams and rivers, right: working in Universities/Research Institutions or Local 

Agencies (Source: C. Giardino, CNR, Italy, from INFORM Project, www.copernicus-inform.eu). 

For the temporal frequencies the inland water end-users answers have been analysed dividing them 
in different representative groups (Figure 2.11). Comparing the two categories of products it can be 
seen that for the EO derived products there is a general tendency in preferring the monthly 
temporal frequency, especially end-users working also on streams and rivers. End-use that  requires 
at least one product per month, will need much more frequent coverage taking into account the risk 
of sun glint (avoidable by proper sensor  and platform geometry  design), wave foam, clouds, fog, 
smoke  and haze etc. 
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With respect to the time of the day a single sun synchronous acquisitions might be insufficient to 
capture phenomena with a high degree of change, such as re-suspension of suspended matter due 
to tides or storms or cyanobacterial blooming. Geostationary platforms with suitable earth observing 
sensors may provide relevant high frequency data, although spatial resolution will be lower 
indicating that GEO sensors would be used mainly for medium to large aquatic ecosystem areas. 

Due to this large variation in end-user requirements and the priority for spatial resolution between 
~17 to ~33 m with fine spectral bands with sufficient radiometric resolution the temporal 
requirement is as high as is technologically possible and affordable. An absolute minimum would be 
Landsat frequency as that would deliver seasonal data, whilst the dual sensor Sentinel-2 frequency is 
preferable (once every five days). But essentially the revisit should be as high as possible (baseline 
one overpass per day and threshold one overpass once every 3 to 5 days) as especially the water 
quality characteristics change rapidly. However, larger water bodies (in excess of 1 by 1 km) can be 
imaged more regularly by the ocean colour sensors such as Sentinel-3. For substratum 
measurements and bathymetry these requirements are more relaxed as only one cloud free image 
per season is required, unless there is an extreme event such as coral bleaching, cyclone/hurricane, 
tsunami or man-induced damage such as dredging or pollution events that need to be monitored. A 
mix of LEO sensors in polar orbit, complemented by sensors on board of e.g. the international space 
station (or LEO sensors) covering the mid and lower latitudes complemented by highest spatial 
resolution possible geostationary sensors would be the optimum configuration. 

Temporal requirements 

The temporal requirement is as high as is technologically possible and affordable. An absolute 
minimum would be Landsat frequency whilst once every one to five days is much better. But 
essentially the revisit should be as high as possible as especially the water quality characteristics 
change rapidly. For substratum measurements and bathymetry these requirements are more 
relaxed as only one cloud free image per season is required, unless there is an extreme event such as 
coral bleaching, cyclone/hurricane, tsunami or man-induced damage such as dredging or pollution 
events that need to be monitored.  

2.3.5 Atmospheric, adjacency effect and air-water interface measurement 
requirements 
As we presented in 2.2.6 the proposed sensor or sensor system (flying in tandem with atmosphere 
capable sensors) will need to have the capability to also measure relevant atmospheric composition 
components such as aerosols, the atmospheric gases and water vapour that affect the measured 
aquatic ecosystem reflectance spectrum at the top of atmosphere including the atmospheric 
adjacency effect. To correct for the atmospheric adjacency effect it is essential to have (for all the 
spectral bands) non-saturated data over the land pixels. The requirements for air water interface 
corrections, specifically sun glint and sky glint of water surface that may be affected by multiple 
wave types (capillary waves, refractive waves, wind induced waves, current affected waves and 
swell) are different as they occur across the measured spectrum and are by definition the colour of 
the blue sky (diffuse irradiance reflected at surface = sky glint) or of the sun. 
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2.3.5.1 Ozone absorption 
Absorption by ozone impacts the radiance mainly between 500 nm and 700 nm and has to be 
corrected for based on the ozone concentration. The total columnar ozone is normally taken from 
external data sources (such as TOMS, OMI, ECMWF, GOME (Bracher et al., 2005)), although some 
algorithms are being developed to retrieve columnar ozone from the image through a spectral fitting 
method applied to the Chappuis absorption band between 400 and 650 nm with maxima around 577 
and 605 nm (Gorshelev et al., 2014).    

2.3.5.2 NO2 absorption 
Nitrogen dioxide (NO2) absorbs at wavelengths lower than 600 nm with a peak in the blue region 
around 412 nm. In the atmospheric correction, the importance of NO2 absorption has often been 
neglected or assumed to be constant in time and space.  However near urban or industrial areas the 
NO2 concentrations can be significant. Gao et al., (2009) indicated that neglecting NO2 absorption in 
the atmospheric correction process can lead to errors in the order of 10 to 20 % in the retrieved 
reflectance at ~400 nm over dark targets as coastal waters. We therefore recommend taking into 
account the NO2 amount in the atmospheric correction. NO2 amounts are retrieved from satellites 
missions such as SCIAMACHY, GOME-2 and OMI and other future atmospheric composition focused 
missions. 

2.3.5.3 Water vapour 
Water vapour is the gas having the most important radiative impact in the spectral areas considered 
for aquatic ecosystems. It may have high spatial and temporal variability. All methods to estimate 
water vapour require the presence of a measurement band in the water vapour absorption feature 
centred at 820 nm and/or 940 nm (for SWIR at 1130 nm) and two reference bands at about 770 nm 
and 870 nm for the 820 nm feature; at about 870 and 1020 nm for the 940 nm feature, and at about 
1050 and 1135 nm for the 1130 nm feature.  Some more recent methods use first and second 
derivatives of a full spectrum (Miesch et al., 2015 and Rodgers et al., 2001) leading to a sensor 
hyperspectral requirement. 

2.3.5.4 Aerosols 
Measuring aerosols requires separating three areas of application: estimating aerosols over land, 
over dark water bodies and over bright water bodies 

• Aerosol information from nearby land pixels – these require the same spectral bands as 
determined previously for aquatic ecosystem variables augmented by the bands required for dark 
and bright water bodies.  

• Aerosol retrieval over dark waters including clear ocean waters - Vanhellemont and Ruddick (2015) 
give an excellent review of the various approaches for aerosol retrievals. Open ocean atmospheric 
correction schemes typically assume that the water–leaving radiance reflectance in NIR bands is 
zero. Therefore, at NIR bands the total radiance reaching the sensor is of atmospheric origin. The 
signal in the NIR bands can thus be employed for the aerosol abundance estimation (Gordon and 
Wang, 1994). The assumption, referred to as NIR black pixel assumption, holds for waters with low 
chlorophyll concentration and where phytoplankton or CDOM is the only optically significant water 
column contributor. To retrieve both the aerosol type and aerosol optical depth at least two NIR 
bands are used (Gordon and Wang, 1994). These are located around 778 nm and 865 nm. 
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• Aerosol retrieval over bright waters where the NIR black pixel assumption no longer holds - Coastal 

waters, lakes and rivers may contain low to moderate to very high concentrations of particulate 

matter. The water leaving radiance in the NIR is no longer negligible for these turbid waters. In 

chapter 4 information is provided on manners to retrieve aerosol information over bright water, 

here we summarize the required bands: 520, 620, 709, 775 and 865 nm. 

Instead of using NIR bands for quantifying the aerosol contribution one can switch to longer short-

wave infrared (SWIR) bands (Vanhellemont and Ruddick 2015) which have the advantage that no 

assumptions have to be made on the water optical properties. First, the spectral ratio of Rayleigh-

corrected reflectances at two SWIR bands is used to deduce the aerosol model or aerosol spectral 

shape. Once the aerosol model is determined, the aerosol optical thickness (AOT) can be derived, 

from the aerosol reflectance in a single SWIR band. Uncertainties in the SWIR black pixel 

atmospheric correction mainly arise from the relative high noise in the SWIR bands and the spectral 

distance across which the retrieved aerosol properties are extrapolated. This latter is particularly a 

significant issue when absorbing aerosols are present.  Therefore constraining the SWIR-based 

aerosol model retrieval using reflectance from a very short visible band (e.g. a 412 nm band) or 

preferable an UV band is recommended. The inclusion of one or two bands in UV, around 360 and 

368 nm, will help to improve the atmospheric correction in various turbid waters. In highly 

productive waters with high CDOM and detritus the water reflectance in the UV can be assumed to 

be quasi-black allowing to detect the presence of absorbing aerosols.  

Spectral matching or neural network techniques (Goyens et al., 2013) that simultaneously retrieve 

atmospheric and water components indicate the need for hyperspectral data. The parameters of the 

aerosol and bio-optical models are retrieved simultaneously and therefore the use of hyperspectral 

data will reduce the ambiguity in the retrieval of the different parameters. 

2.3.5.5 Cirrus clouds 
Cirrus clouds and aircraft contrails strongly affect images degrading the quality of the atmospheric 

correction. Cirrus clouds are semi-transparent and therefore difficult to detect except around 1380 

nm. At this wavelength water vapour absorbs all the light reflected by the earth. As cirrus clouds are 

high in the atmosphere, they are much less affected by water vapour absorption and as 

consequence they give a clear signal at 1380 nm.  In the spectral range from 0.4 to 1.0 µm, the 

spectral reflectance of the cirrus is close to one. This enables us to assume (Richter et al., 2011) that 

the cirrus reflectance in the VNIR is linearly related to the cirrus reflectance at 1380 nm. Thus, it is 

possible to correct these bands from the presence of cirrus.  In the SWIR range, the cirrus can absorb 

and scatter the radiation, and at present no efficient correction method is available but empirical 

correction method exists as proposed by Richter et al., 2011. 

2.3.5.6 Air-water interface 
For water targets the ‘non-lambertian’ or non-flat air-water interface is an extra complication. Only 

photons which have penetrated the air-water interface and been scattered or absorbed by the water 

or benthos itself contain useful information. Photons which are reflected by the air-water interface 

have not interacted with the water and its constituents and thus represent an unwanted signal. A 

correction for the air-water interface reflection is required in order to derive the water leaving 

reflectance or radiance from hyperspectral imaging data. The air-interface correction includes 

correction for sun glint, sky glint and reflection from white caps.  
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In open-oceans a Cox-Munk (Cox and Munk, 1954) probability distribution formulism is commonly 
used to predict and correct for glint contamination for ocean colour sensors with sufficiently coarse 
spatial resolution that individual wave facets or wave trains cannot be distinguished. This formulism 
is however often not justified for shallow waters, estuaries, lagoons, rivers, lakes and reservoirs 
where local wind effects due to topography and refraction against shorelines affect the resultant 
wave height and patterns. Moreover when the spatial resolution of the sensor (e.g. the 
recommended resolution proposed here of 17 m or finer spatial resolution such as Sentinel-2 at 10 
m, or commercial satellites with multispectral bands and pixels of 1 to 5 m) are in the same range as 
the wave facets or wave crest trough distances, the stochastic approach can no longer be used. 

Because of this finer spatial resolution issue image-driven glint correction approaches are being 
developed. Kutser et al., (1999) developed a glint correction method applicable to a high spectral 
resolution sensor. The method uses the information available in the oxygen absorption feature at 
760 nm and two bands, at 739 and 860nm, outside the oxygen feature to estimate the amount of 
glint and to correct for it.   

Table 2.5 Atmospheric and air-water interface characterisation spectral bands. The greyed spectral bands 
already occur in Table 2.2.. 

centre FWHM Atmospheric characterisation and air-water interface effect removal bands  

[nm] [nm]    

+/- 360 8 To constrain the SWIR-based aerosol model over turbid waters 1 

+/- 368 8 To constrain the SWIR-based aerosol model over turbid waters 2 

+/-412 8 NO2   

+/-520 8 Aerosol retrieval 3 

+/-575 8 Chappuis band for O3 absorption(Gorshelev et al., (2014)  4 

+/-605 8 Chappuis band for O3 absorption (Gorshelev et al., (2014) 5 

+/-620 8 Aerosol retrieval  

+/-709 8 Aerosol retrieval  

+/-740 8 Sun glint removal  

+/- 761 3 Sun glint removal 6 

+/-775 16 Aerosol retrieval; water vapour reference band 7 

+/-820 16 Water vapour absorption 8 

+/-865 16 Aerosol retrieval; water vapour reference band; sun glint removal; (Dogliotti et 
al., 2015) 

9 

+/-940 16 Water vapour absorption 10 

+/-1020 16 water vapour reference band 11 

+/-1050 16 water vapour reference band 12 

+/-1130 16 Water vapour absorption 13 

+/-1135 16 Water vapour reference band 14 

+/- 1380  16 Cirrus clouds 15 
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In general it is useful to have two NIR spectral bands beyond 730 nm that can be sacrificed for sun 
and sky glint correction. It is a requirement that these bands are registered simultaneously with the 
other VIS-NIR bands as wave glint varies almost instantly when taking into account capillary and 
refractive waves and a sensor flying in LEO orbit at ~ 30000 km/hr. 

2.3.6 Summary of sensor specifications 
The following order of priority applies to defining the optimal requirements for an aquatic 
ecosystem earth observing sensor:  

• Priority 1: Spatial resolution: as a water body cannot be measured if the pixels are too large, 
and a requirement for heterogeneous macrophytes, seagrasses, macro-algae and coral.  

• Priority 2: Spectral resolution: as aquatic ecosystems variables need to be identified through 
their spectral signature (be it spectral absorption, spectral backscattering or spectral 
reflectance as well as fluorescence). 

• Priority 3: Radiometric resolution: This determines to what level of accuracy a variable can 
be detected if priorities 1 and 2 are adequately addressed. Radiometric range is also relevant 
as the proposed sensor system will need to be able to cater for very low reflecting targets 
next to very high reflecting targets. 

• Priority 4: Temporal resolution: Once priorities 1 through to 3 are adequately addressed of 
course temporal resolution becomes the most important factor as it will determine how 
often suitable images of aquatic ecosystem areas will be revisited. However this will be a 
factor of cost mainly: many permutations (sensors in multiple orbits and orbit types) exist to 
solve this issue which will be further detailed in chapter 3. 

The minimum and optimal measurement requirements for reliable monitoring of aquatic ecosystem 
are summarised here leading to the following sensor recommendations: Regarding spectral 
resolution for water quality, macrophytes, bathymetry and benthic substratum measurements a 
hyperspectral sensor is recommended covering the spectral range from 380 to 730 nm with a 
spectral resolution around 5 to 8 nm. Over clear dark water bodies the instrument should not 
saturate up to radiances of more than 100 mW m-2 sr-1 nm-1 in the blue and 20 mW m-2 sr-1 nm-1 in 
the red, and its radiometric sensitivity (NE∆L) should be between 0.005 mW m-2 sr-1 nm-1 (optimal) 
and 0.010 mW m-2 sr-1 nm-1, which is comparable to the sensitivity of MERIS (with 300 m pixels, 
whereas this report recommends ~17 to ~33 m pixels). Such a sensor provides information about 
water constituents for many coastal waters and the majority of inland waters, many of which are 
located at high latitudes and monitored at low sun elevation.  

When monitoring bright targets like extremely turbid waters, bleached corals, and shallow waters 
with bright sand, the instrument must be able to measure radiances up to 400 mW m-2 sr-1 nm-1 in 
the blue and 200 mW m-2 sr-1 nm-1 in the red.  Thus this becomes the core requirement. 

If a more cost-effective solution is considered such as dedicated fixed band multispectral sensors, we 
propose the 26 bands in Table 2.2. possibly augmented by the 15 atmospheric and air water 
interface correction bands of Table 2.5., although a solution of flying in tandem with existing 
atmospheric capable sensors is an option too. 
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Table 2.6 Summary of sensor requirements 

Requirements Values 
Spatial  
 Spectral Spectral range from 380 to 730 nm with a spectral resolution around 5 to 8 nm and 

reduced spectral requirements from 380-400 and from 730 to 1000 nm; a multispectral 
band set of ~26 bands (between 380 and 780 nm) is an alternative. Ancillary bands (in 
total 15) from 360 to 380  and 760 to 1340 are advised for atmospheric correction, and a 
band at 1380 for cirrus cloud detection. 

Radiometric Saturated radiances: more than 400 mW m-2 sr-1 nm-1 in the blue and 200 mW m-2 sr-1 nm-

1 in the red 
Maximum  radiances: radiances up to 400 mW m-2 sr-1 nm-1 in the blue and 200 mW m-2 
sr-1 nm-1 in the red 
NE∆L: between 0.005 mW m-2 sr-1 nm-1 (optimal) and 0.010 mW m-2 sr-1 nm-1 
 

Temporal As high as feasible. A threshold would be one image globally once every 16 days; 
preferable would be one image globally per day; a mix of high spatial resolution LEO and 
lower spatial but high temporal resolution GEO (allowing images once every 10 minutes) 
could be a valuable combination 

Geometric Registration: Threshold is 0.4 pixels in along and across track directions; baseline is 0.2 
pixels in along and across track directions 

 

If a more cost-effective solution is considered such as dedicated fixed band multispectral sensors, we 
propose the 26 bands in Table 2.2, possibly augmented by the 15 atmospheric and air water 
interface correction bands of Table 2.5. 

Applications requiring temperature make a separate instrument necessary, i.e. a thermal sensor. 

Correction of sun and sky glint, atmospheric and adjacency effects and masking of clouds and cloud 
shadows drive contradictory spatial sensor requirements. Correction of sun and sky light reflections 
at the water surface requires at least three channels in the near infrared (730 to 860 nm) with a 
spectral resolution around 15 nm. While these data must be acquired simultaneously and 
geometrically identical to the hyperspectral images, correction of atmospheric and adjacency effects 
can be done at reduced geometric resolution and should cover a much larger field of view to capture 
also the terrestrial surroundings of the aquatic ecosystem being targeted. Flying an aquatic 
ecosystem dedicated sensor in tandem with atmospheric capable sensors is of course a cost-
effective solution to this issue. Cloud and cloud shadow corrections should ideally be done at the 
highest spatial resolution. If it is acceptable to lose some information around the clouds and cloud 
shadows a coarser spatial resolution is possible-similar to that sufficient for atmospheric and 
adjacency effects. 
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2.4 Suitability assessment of past, current and near-future earth 
observing sensors 
Table 2.7 resents an overview of past, present and future relevant sensors and their suitability for 

use in aquatic ecosystems. The scoring has been done against the threshold and baseline sensor 

specification presented. It is evident that none of the existing sensors meet all requirements at 

baseline or threshold level. 

The ocean-coastal sensors are too low in spatial resolution and the land and land-coast sensors do 

not have sufficient spectral bands and/or SNR, NE∆L and NE∆R mainly. Some commercial sensors 

score quite high on spatial resolution and revisit time (if their capability for pointing at angles up to 

40 degree of nadir are taken into consideration) but lack in (number of or fine resolution in) spectral 

bands and SNR, NE∆L and NE∆R. Moreover the data costs can be become prohibitive for large areas 

and frequent monitoring. 

Within the section of the table on future sensors it is evident that the planned R&D hyperspectral 

satellite sensors are all highly suitable except for radiometric sensitivity and only being able to image 

and direct broadcast (or store on board)  small parts of the earth during one orbit. The most recent 

HyspIRI configuration proposal would be very suitable as a threshold mission with 30 m pixels except 

for its revisit time. 

For the purpose of testing the recommendations of this report the upcoming experimental 

hyperspectral satellite and ISS missions are highly suitable. 
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Table 2.7 Overview of past, present and future relevant sensors and their suitability for use in aquatic 

ecosystems 

 

Meets baseline requirements

Meets threshold requirements ❶ Highly suited

Suitable for some applications - but does not meet one or more  requirements ❷ Suitable

Commercial data costs ❸ Potential

Unsuitable ❹ Not suitable

Data currency

Sensor 

functional 

type

Sensor name
Spatial resolution      

(= Pixel size)

Spectral bands 

from 360-1000 

nm

SNR
Revisit frequency 

(once every x days)

Raw data 

cost/km2 

[USD]

Launch 

date
End date

Shallow water 

bathymetry Note 
based on spectral 

capability only
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Archival Ocean-coastal MERIS 1.2 km 15 2 days Free 2002 2012 ❶ ❶ ❶ ❶ ❶ ❶ ❶ ❶ ❶ ❶

Ocean-coastal MERIS 0.3 km 15 2 days Free 2002 2012 ❶ ❶ ❶ ❶ ❶ ❶ ❶ ❶ ❶ ❶

Archival Land Hyperion 30 m 60 16 days (by pointing Free 2000 2017 ❶ ❶ ❶ ❶ ❶ ❶ ❶ ❶ ❶ ❶

Archival Coastal HICO 90 m 100

orbit <51 degrees N 

and S = a 3 to 5 days 

cadence

Free 2009 2014 ❶ ❶ ❶ ❶ ❶ ❶ ❶ ❶ ❶ ❶

Archival Land LANDSAT 4 to 7 30 m 4 16 days) Free 1984

2017

❸
Surface 

bloom
❷ ❷ ❷ ❷ ❷ ❸ ❸ ❷

Current Ocean-coastal MODIS-A&T 1 km 9 daily Free 2000 ❷ ❸ ❶ ❶ ❶ ❶ ❷ ❷ ❷ ❷

Land MODIS-A&T 500 m 2 daily Free 2000 ❹ ❹ ❷ ❷ ❷ ❷ ❹ ❸ ❸ ❸
Land MODIS-A&T 250 m 2 daily Free 2000 ❷ ❹ ❷ ❹ ❷ ❷ ❸ ❸ ❸ ❸

Ocean-coastal OCM-2 300 m 15 2-3 days Free 2009 ❶ ❶ ❶ ❶ ❶ ❶ ❷ ❷ ❷ ❷

Ocean-coastal Sentinel-3 300 m 21
Daily (with 2 

satellites) 
Free 2016 ❶ ❶ ❶ ❶ ❶ ❶ ❶ ❶ ❶ ❶

Ocean-coastal Suomi-VIIRS 750 (375) m 7 (3) daily Free 2012 ❷ ❸ ❶ ❶ ❶ ❶ ❷ ❷ ❷ ❷

Ocean-coastal SGLI 250 m 11 2 days Free 2018 ❷ ❹ ❶ ❶ ❶ ❶ ❷ ❷ ❷ ❷

Current Geostationary SEVIRI on MSG 1 km 2 96 per 24 hours Free 2002 ❸ ❹ ❷ ❹ ❷ ❷ ❸ ❸ ❸ ❹

GOCI 500 m 8 Hourly Free 2010 ❶ ❸ ❶ ❷ ❶ ❶ ❷ ❷ ❷ ❷
Himawari-8&9 500 m – 2 km 4 10 min possible Free 2014 ❸ ❹ ❶ ❸ ❷ ❶ ❸ ❸ ❸ ❸
GOES-R 500 m – 2 km 4 10 min possible Free 2017 ❸ ❹ ❶ ❸ ❷ ❶ ❸ ❸ ❸ ❸

Future GOCI-II 250 m - 1 km 12 Hourly Free 2019 ❶ ❸ ❶ ❷ ❶ ❶ ❷ ❷ ❷ ❷
Current Hyper-

spectral
CHRIS-PROBA 17 or 34 m 19 or 63 7 by pointing Free 2001 ❶ ❶ ❶ ❶ ❶ ❶ ❶ ❶ ❶ ❶

Current Land -coast LANDSAT 8 30 m 5 16 days Free 2013 ❷ Surface 

bloom
❶ ❷ ❶ ❶ ❷ ❷ ❷ ❷

Land SENTINEL-2 10 m 4 5 days with 2 S-2’s Free 2014 ❷ Surface 

bloom
❶ ❷ ❶ ❶ ❷ ❷ ❷ ❷

SENTINEL-2 20 m 4 5 days with 2 S-2’s Free 2014 ❷ Surface 

bloom
❶ ❷ ❶ ❶ ❷ ❷ ❷ ❷

SENTINEL-2 60 m 2 5 days with 2 S-2’s Free 2014 ❷ Surface 

bloom
❶ ❷ ❶ ❶ ❷ ❷ ❷ ❷

Land
IKONOS, QuickBird, SPOT-5 , 6 

GeoEye etc.
2 – 4 m 3 to 4

Programmable: 60 

days to 2–3 days
5 to 15

1999 

onwards
❸

Surface 

bloom
❶ ❸ ❶ ❶ ❷ ❷ ❷ ❷

Land RapidEye 6.5 m 5 Daily 1.5 2005 ❸ Surface 

bloom
❶ ❸ ❶ ❶ ❷ ❷ ❷ ❷

Land -coast
WORLDVIEW-2

2 m spectral

0.5 m B&W
8

Programmable: 60 

days to 1 day
30 2009 ❷ ❷ ❶ ❷ ❶ ❶ ❶ ❶ ❶ ❷

Land -coast

WORLDVIEW-3
1.24 m spectral

0.34 m B&W
8

Programmable: 60 

days to 1 days
30 2014 ❷ ❷ ❶ ❷ ❶ ❶ ❶ ❶ ❶ ❷

Future Ocean-coastal
JPSS-1, -2, …. 750 (375) 7 (3) daily Free

2017, 

2022,…
❷ ❸ ❶ ❶ ❶ ❶ ❷ ❷ ❷ ❷

Future Hyper-

spectral
EnMap 30 m 90

Programmable 

once per 4 days
Free 2020 ❶ ❶ ❶ ❶ ❶ ❶ ❶ ❶ ❶ ❶

PRISMA
20 m spectral

2.5 m B&W
66

25 days

pointing-7 days
Free 2018 ❶ ❶ ❶ ❶ ❶ ❶ ❶ ❶ ❶ ❶

HyspIRI 30 60 16 Free 2022 ❶ ❶ ❶ ❶ ❶ ❶ ❶ ❶ ❶ ❶
Future

Hyper-

spectral ISS
HISUI 20 * 30 m pixels 60

orbit <51 degrees N 

and S = a 3 to 5 days 

cadence

Free 2018 ❶ ❶ ❶ ❶ ❶ ❶ ❶ ❶ ❶ ❶

Future

Hyper-

spectral ISS
DESIS 30 m 235

orbit <51 degrees N 

and S = a 3 to 5 days 

cadence

Free 2018 ❶ ❶ ❶ ❶ ❶ ❶ ❶ ❶ ❶ ❶

CEOS FS 

Baseline

Hyper-

spectral CEOS FS AE-Baseline ~17 m 75 to 120 daily Free a.s.a.p.
❶ ❶ ❶ ❶ ❶ ❶ ❶ ❶ ❶ ❶

Threshold

Hyper-

spectral CEOS FS AE-Threshold ~33 m 75 3 to 5 days Free a.s.a.p.
❶ ❶ ❶ ❶ ❶ ❶ ❶ ❶ ❶ ❶

CEOS FS 

Baseline
Multi-spectral

CEOS FS AE-Baseline ~17 m 41 daily Free a.s.a.p.
❶ ❶ ❶ ❶ ❶ ❶ ❶ ❶ ❶ ❶

Threshold
Multi-spectral

CEOS FS AE-Threshold ~33 m 41 3 to 5 days Free a.s.a.p.
❶ ❶ ❶ ❶ ❶ ❶ ❶ ❶ ❶ ❶

Water-quality variables (freshwater, coastal and ocean): Note 
based on spectral capability only

Macrophytes, macro-algae, 

seagrasses and corals Note 
based on spectral capability 

only
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2.5 Proposed modifications to planned future sensors to make them 
more suitable for (non-oceanic) aquatic ecosystems 

2.5.1 Modifications to planned land sensors 
Many publicly available land sensors have sufficient spatial resolution (such as Landsat 8 and 

Sentinel-2) to be relevant for earth observation of aquatic ecosystems. However their spectral bands 

are often too broad and miss essential areas for aquatic ecosystems.  We discuss two systems for 

which future missions are highly likely and can still be modified: Landsat 10 and the Sentinel-2-E and 

2-F satellite sensors.  

By adding 2 spectral bands of no more than 15 nm width: one centered at 620-624 nm (the in vivo 

absorption maximum of cyanophycocyanin) and one centred at 676 nm (the in vivo red wavelength 

absorption maximum of chlorophyll –a) these systems would become significantly more useful for 

aquatic ecosystems. In the case of Sentinel-2 making all 13 bands in the 400 to 1000 nm range 10 m 

spatial resolution (instead of the current 10, 20 and 60 m band configuration) would already be of 

major benefit. By adding two more bands as stated (620 -624 and 676 nm) Landsat and Sentinel-2 

would become significantly more relevant for aquatic ecosystems. 

Given the rapid advances in sensor technology it may be more cost-effective to make these systems 

hyperspectral as that would assure continuity with past systems (as the hyperspectral bands can be 

convoluted or binned to match the previously used multispectral bands of the Landsat and Sentinel-

2 series) ) and suitable for all current and future  applications.  

2.5.2 Modifications to planned ocean and coastal colour sensors 
 Most ocean sensors are spectrally and radiometrically suitable for aquatic ecosystems (specifically 

Sentinel-3’s OLCI sensor), except for their spatial resolution.  Adaptation of these sensors so they 

image at higher spatial resolution near coasts, estuaries, lagoons, rivers, lake and reservoirs is 

recommended. Alternatively it could be considered to add (piggyback) hyperspectral sensors with 

higher spatial resolution (e.g. ~17 to ~30 m) to future ocean-coastal sensors.  
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3 Platform requirements and mission design 
ANDY COURT, XAVIER BRIOTTET, SINDY STERCKX, MARTIN BERGERON, ARNOLD G. DEKKER , KEVIN R. 
TURPIE, CLAUDIA GIARDINO, VITTORIO E. BRANDO AND PETER GEGE 

3.1 General considerations 
In previous chapters we identified that the following order of priorities applies to an aquatic 
ecosystem earth observing sensor: 

• Priority 1 Spatial resolution: as a water body cannot be measured if the pixels are too large 
for heterogeneous macrophyte, seagrass, macro-algae, coral and other benthic covers 

• Priority 2 Spectral resolution: as aquatic ecosystems variables need to be identified through 
their spectral signature (including spectral absorption and spectral backscattering in the 
water column or spectral reflectance of floating or submerged macrophytes, of the 
substratum and is cover); atmospheric and air-water interface effects removal require 
specific spectral bands too 

• Priority 3 Radiometric resolution and range: Coastal and inland water and adjacent 
terrestrial targets cover a large radiance range, with many dark to bright surfaces of interest.  
Such an environment requires a sensor that can make radiometric measurements that cover 
this range while accurately resolving variation in dark targets. This determines to what level 
of accuracy a variable can be detected if priorities 1 and 2 are adequately addressed 

• Priority 4 Temporal resolution: Once priorities 1 through to 3 are adequately addressed, 
temporal resolution becomes the most important factor as it determines how often the 
aquatic ecosystem areas will be revisited. This is mainly a cost driver as many permutations 
exits to solve this issue. 

In chapter 2 the case is made for either a 26 band multispectral sensor or a hyperspectral sensor 
focusing on the range of 380 to 1000 nm with potential additional SWIR bands up to 1380 nm for 
atmospheric correction facilitation. The spatial resolution required is equal to or less than ~17 m for 
the baseline mission and equal to or less than ~33 m for the threshold mission. The radiometric 
sensitivity needs to be as high as possible given the spatial and spectral design criteria. The temporal 
resolution needs to be as high as possible as aquatic ecosystem variables can change: 

1. Within hours such as algal blooms, flood events with associated influxes of high nutrient, 
high coloured dissolved organic matter and suspended sediment loads into reservoirs, 
estuaries or coastal seas or with tidal or wind driven events. 

2. Within days such as pollution events, dredging effects etc. 
3. Within weeks such as coral bleaching events. 
4. Seasonally to yearly to longer term such as successions of phytoplankton functional types or 

emergence, florescence and decay of macrophytes. 

At the same time the atmospheric and air-water interface contribution to signals measured from 
space must also be taken into account. Combining all these criteria means that for persistent and 
accurate measurements covering all applications a range of earth observing sensors and platforms 
may be required (ideally) whether for scientific, environmental or management relevant monitoring. 
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Many ancillary measurements may be able to be obtained from other earth observing sensors such 

as dedicated atmospheric missions. Whilst satellites can fulfil the majority of the measurements 

other systems are also likely to be needed, for example on or within the waterbody or on aircraft, 

drones or high altitude platforms, in order to provide specific coverage when needed. 

First we will discuss the pro’s and con’s of LEO and GEO satellite platforms. Next we discuss platform 

and mission design considerations such as scanning time and coverage, sun glint avoidance and 

mitigation strategies, and polarization. Following on we discuss instrument characteristics and 

response functions such as spectral, radiometric and polarization responses, optical and electronic 

crosstalk, striping and -detector uniformity, near-field response, stray light rejection and band to 

band registration issues. In the following section on calibration and validation we present 

consideration for pre-launch calibration and characterization and for post launch calibration and 

validation. We then discuss some additional platform requirements such as geometric stability, 

possible pointing function and ancillary data requirements.  At the end of this chapter we present a 

conceptual framework for an end-to-end simulator as an activity to be recommended when actually 

designing and building a complete aquatic ecosystem Earth observing senor satellite system. 

3.2 Orbit sensors 
A generic straw-man concept for the required instruments will be described to a level that allows a 

(rough) estimation of mass, volume, data rate, etc. Possible orbital configurations, e.g.  sun- 

synchronous, drifting, will be described with pros and cons with respect to the science requirements. 

3.2.1 Low Earth Orbit (LEO) satellites. 
LEO satellites fly between approximately 400 km and 800 km above the Earth and can have a variety 

of orbits to provide different measurements, for example in a Sun synchronous orbit to observe a 

specific time of day on the ground, or in inclined orbits to optimize revisit times or specific 

geographic coverage. LEO satellites with a sufficient wide swath allow the full globe to be observed 

with a uniform and high spatial ground resolution. The major issue for current and planned medium 

to high spatial and spectral resolution LEO satellites is that they have a limited swath which limits 

ground coverage per orbit, this is to maintain reasonable instrument dimensions (mass, volume) and 

also to limit the required data bandwidth for data transmission – high resolution and hyperspectral 

imaging require high transmission data rates. The transmission of data may only occur to ground 

stations at particular geographic locations where the satellite is in contact for only a few minutes 

during which all acquired data must be transmitted to the receiving station, which creates a data 

volume limitation for observations. The European Space Agency makes use of data relay satellites in 

geostationary orbit as an alternative way to buffer data allowing greater data volumes to be 

transmitted to ground stations. The increasing amount of ground stations globally also increases this 

satellite to ground data down links capacity. 

As well as measurement of the aquatic ecosystem variables, the atmospheric conditions at the time 

of measurement must also be taken into account, to date this is largely achieved through 

atmospheric models (e.g. Modtran) assuming certain prevailing conditions. In the foreseeable 

future, near real time measurements of the atmospheric gases and aerosols can be provided by 

missions such as the Copernicus Sentinel 4, 5, 5P, the NASA/NOAA (GOES, JPSS)and the Japanese 

Himawari series of GEO satellites. Compact instruments are in development for measurement of 
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specific atmospheric gases and aerosols respectively, which could also share the same platform as 

any dedicated water mission instrument. 

Table 2.7 summarizes all relevant archival, current and planned missions that can meet some of the 

requirements for assessing aquatic ecosystems from ocean via coast and coral reef to inland water 

measurements. Currently not one instrument meets all the desired criteria. Therefore the last rows 

in Table 2.7 contain the specifications of this feasibility study.  We identified in chapter 2 that a 

dedicated aquatic ecosystem earth observing sensor would require 5 to 8 nm wide bands, a spatial 

resolution of ~17 to ~33 m ground resolution with high radiometric accuracy. These requirements 

are challenging and requires special optics and/or detector configurations which then also impact 

system resources such as downlink and on-board data storage and data transmission speeds. 

Noise in an earth observing sensor is the square root of the sum of the shot noise, and of 

instrumental noise such as dark noise, readout noise and digitization noise. Note that photon noise 

is a function of the square root of the entrance radiance. Assuming an ideal instrument, the 

maximum theoretical SNR is limited by the shot noise. 

In order to understand what the current technical limitations are on the 3 constraints that interact 

with respect to spatial, spectral and radiometric resolution we calculated a theoretical maximal SNR 

for an imaging spectrometry Earth observing sensor with pixel size of 17 and 33 m, spectral sampling 

interval of 8 nm with a lens aperture of 300 mm in a 400 km orbit.  

Figure 3.1 shows the results. The following variables will change the SNR linearly: increasing the 

aperture to e.g. 600 mm will double the SNR, increasing the altitude to 800 km will decrease the SNR 

by half, decreasing the spectral sampling interval from 8 to 4 nm will decrease the SNR by a square 

root function. An increase in spatial resolution from e.g. 17 to 34 m increases the SNR by a square 

root function of pixel size. 

It is useful to discriminate three main sources of noise in an earth observed image: i) the instrument 

noise (discussed above) and ii) the environmental noise that is caused by spatially variable 

atmosphere and air-water interface effects that we cannot fully correct for (Wettle et al., 2004) and 

iii) by the algorithm and it’s parameterisation used to retrieve the variable to be estimated.  

In this chapter we focus on key instrument design considerations such as SNR (from which NE∆R and 

NE∆L can be estimated if all relevant information is presented such as in Figure 3.1.), polarization 

and stray light. 

It is evident that the level of specifications that are needed, to estimate optically active water 

constituents in high latitudes or over very dark waters or to classify benthic materials through an 

almost optically deep water column, cannot be met by current LEO sensor technology given a pixel 

size of 17 to 33 m. The main variables that can be influenced (at a cost increase as the size and 

weight of the instrument increases) are the optics (increasing the aperture width and the focal 

length). Also, there are technological developments possible (see e.g.  the CHRIS-PROBA 

experimental sensor) such as pointing the sensor on a fixed position for a longer time (dwelling such 

as ground motion compensation) to increase the SNR. However, over water bodies this will be less 

effective as the water surface variability ( with its often occurring wind ripples and waves and, 

varying surface Fresnel reflectance with sun and sensor look angle), may enhance the environmental 
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noise effects. Detector technology is also rapidly improving allowing more sensitive detector types 

which could also increase the SNR. 

For a more detailed discussion on SNR we refer to Moses et al., (2012) that analyse the effects of 

SNR for retrieving optical water quality variables using the HICO sensor over turbid inland waters. 

 

Figure 3.1.Theoretical maximal SNR for an imaging spectrometry earth observing sensor with pixel size of 17 
and 33 m, spectral sampling interval of 8 nm with a lens aperture of 300 mm in a 400 km orbit. The radiance 

was calculated using Ahmad (2010) with a sun zenith angle of 42°. Typical radiance from PACE Ocean Color 
Instrument (Meister et al., 2011)  

Looking to the future some of these limitations for instruments in LEO satellites can be overcome: 

• Improved detector systems will allow greater flexibility in targeted data acquisition over 

specific water systems, while ignoring unwanted areas in the same field of view (i.e. 

programmed CMOS pixel windowing across the detector), this will allow more specific data 

to be acquired during each orbit. 

• Optical systems will become more compact through new techniques such as free form 

optics, allowing instrument performances to be increased while maintaining, or reducing, 

current volumes and masses. 

• On-board processing can be implemented to carry out Level 0 to 1b processing of raw data, 

which again will allow larger regions to be observed, while maintaining current data rates. 

• Optical telecommunication terminals will become available for smaller satellites allowing 

much higher data transmission rates (up to 10 Gb/sec), which again helps to overcome the 

data bottleneck. 

3.2.2 Geostationary orbit sensors 
Geostationary satellites are becoming increasingly useful for monitoring aquatic ecosystems. The 

main focus would be looking at events which occur at timescales of minutes to hours. In addition the 

0 

200 

400 

600 

800 

1000 

1200 

350 450 550 650 750 850 950 1050 

SNR  
(-) 

Wavelength (nm) 

Maximum theoretical SNR: 
 aperture 300 mm; altitude 400 km; 

spectral sampling interval  8 nm 

Binned 17 m GSD

Binned 33 m GSD



72 
 

fact that geostationary sensors image continuously also means that the probability of obtaining 
cloud free or sun glint free images increases. Some of these events relevant to aquatic ecosystem 
include (potentially harmful) algal blooms, the extent of river plumes after heavy rainfall in the 
catchment, coral reef spawning events, effects of tides and eddies, oil slicks etc., and dust storms as 
they can transport and deposit large amounts of dust that acts as a fertilizer for oligotrophic waters. 

Advances in technology now allow higher spatial resolution: between 500 m pixels (Himawari 8 and 
GOES-R series of satellites and future GOCI-II) to 192 m resolution for multi and hyperspectral data 
for the Indian GISAT-1 satellite and 50 m pixels for  the Chinese GF-4 broad band multispectral 
sensor; higher spectral resolution in the visible and nearby infrared spectral range (Landsat similar 
bands for Himawari and GF-4, eight ocean colour bands for GOCI-I). The temporal resolution varies 
from one image every hour (GOCI-I) to one image very ten minutes (Himawari-8 and onwards-with 2 
minute resolution for the Japan area), to once every 20 seconds for the GF-4 focusing on an area of 
400 by 400 km. 

Several proposals are under consideration for geostationary satellites with enhanced spectral and 
spatial resolution that would focus on oceans and coastal waters (US: GEO-CAPE). Therefore it 
makes sense to consider the requirements for geostationary sensors in addition to LEO sensors. In 
an ideal case it would be a constellation of LEO and GEO sensors that could be truly innovative in 
being able to look events and processes that occur at a timescale of a few minute intervals to those 
that occur at seasonal intervals. Within CEOS there is an ad-hoc working group on the non-
meteorological use of meteorological geostationary satellites. This working group studied the merits 
of  simultaneous use of Himawari-8 and MODIS and VIIRS data, showing  that although at lower 
spectral resolution and SNR, the addition of geostationary data to LEO ocean colour data does 
enhance the amount of pixels for a given coastal-ocean area significantly. 

For a global extent from geostationary satellites it is most likely that an aquatic ecosystem sensor 
placed on four geostationary satellites would be required for continuous global coverage at 
sufficiently low grazing angles. In theory two geostationary satellites could cover the Earth’s surface 
but of course the slant angles at the extreme edges would come close to 90 degrees. A disadvantage 
of geostationary satellites is for imaging the higher south and north latitudes where the slant angles 
cannot be avoided unless a highly elliptical orbit (HEO) is considered. 
 
For 99.5 % of the inland water bodies where 300 m pixels would not suffice (see Table 2.3 and Table 
2.4) as well as similar sized estuarine, lagoonal and near coastal waters finer resolution will increase 
the amount of these types of waters to be imaged. From a radiometric SNR perspective 
geostationary sensors can, in principle, have much longer integration times thereby creasing the 
SNR. From the temporal and spectral resolution perspective geostationary sensors are only limited 
by the amount of data that needs to be recorded, stored and direct broadcast. At this altitude 
however, the spatial resolution is constrained by the diffraction limit which requires a relatively large 
aperture for the highest spatial resolutions (e.g. an aperture of at least 80 cm at 900 nm if a 50 m 
GSD is desired). Combined modes of operation are also of course possible where the full disk is e.g. 
imaged once very hour at a resolution of 500 m and targeted areas at much higher spatial resolution 
down to 50 m resolution as for GF-4. 
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In summary it is relevant to consider the synergy between LEO and GEO sensors, to advocate the use 
of the existing and confirmed near future systems and to propose what a dedicated aquatic 
ecosystem GEO sensor (or a modified land, ocean or atmosphere GEO sensor) should be able to do 
in future to complement LEO sensors. 

3.3 Platform and mission design considerations 

3.3.1 Scanning time and coverage 
For LEO sensor systems there are several factors to consider when determining an optimum for 
overpass time and the spatial coverage per orbit: 

• Overpass time at the same time each day or multiple times per day? 
• In the tropics early in the morning is preferred as clouds have not yet developed 
• But, depending on season, sun glint needs to be avoided which is most severe at tropical 

latitudes. 
• At high latitudes solar noon is the best overpass time to get as much signal from the water 

bodies as possible. 
• How many sensor platforms are being considered? One or 2 or 5 or 100+? 
• Near polar orbit or also considering an International space station type quasi-circum-

equatorial orbit? 
• Will the sensor be pointable in space (see 3.6)? 

Some sort of compromise will be need to be achieved between all of these variables. A coral reef 
focused imaging system ( also suitable for all tropical aquatic ecosystems) would focus on an early 
morning overpass time, but a high latitude boreal lake sensor system would focus on a solar noon 
overpass time guaranteeing highest possible sun zenith angle. 

For GEO sensor systems these issues do not apply as the sensor is fixed over a fixed position on the 
equator (but with higher slant angles at high North and South latitudes). However the distance of a 
GEO stationary satellite has significant consequences for lens aperture, the imaging detector array, 
data transmission etc. 

3.3.2 Sun glint avoidance and mitigation strategies 
Here we discuss sun glint avoidance and sensor based mitigation strategies, whereas the post launch 
image based sun and sky glint removal strategies will be discussed in chapter 4. 

Currently, the presence of sun glint during the acquisitions depends on the characteristics of the 
platform: swath, time of overpass, orbit inclination, depointing capabilities, spatial sampling, etc. 
Thus, before the platform and its orbit are defined, recommendations have to be to maximise 
avoidance of sun glint. 

Earth observation sensors that have been designed for use over water bodies have opted for either 
tilt or roll for sun glint avoidance to increase the fraction of glint free acquisitions. For example, OLCI 
has a 12 degrees westward roll to avoid sun glint. For wide swath sensors however, across track glint 
avoidance is limited by the incidence angle threshold for accurate retrievals of water-leaving 
radiance (MODIS uses a 55 degrees upper limit for sun zenith and 75 for sensor zenith angles 
[MODIS Level 3 Data User Guide, 2014]).  Excessive roll also exacerbates the issue of Earth curvature. 
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As with SeaWIFS and OCTS, PACE is proposing a ± 20 degrees aft (Northern hemisphere on the 

descending node) and forward (Southern hemisphere) pitch in order to minimize sun glint (PACE 

Mission SDT Report, 2012). This implies that the instrument is tilted as it comes over the sub-solar 

point with a staggered pattern to ensure data is acquired over the tilting latitudes (generally, the 

equator) to avoid a gap using off-nadir data from adjacent orbits. Alternative approaches can also 

achieve equivalent glint avoidance (Gregg and Patt, 1994). Sensors that neither roll nor tilt, such as 

MERIS (operated from 2003 to 2012), were affected by a considerable fraction of sun glint 

(Steinmetz et al., 2011).  

 

Figure 3.2 (after Meister et al., 2011) Illustration of how choosing sensor tilt (for SeaWiFS) significantly 
decreases the sun glint effects in the imagery. Global map of SeaWiFS (top) and MODIS Aqua (bottom) glint 
coefficients for March 22nd 2006. MODIS is not tilted. Glint coefficients larger than 0.005 in reflectance 
terms) are classified as high glint in NASA ocean colour processing and coloured pink in the images. Glint 
coefficients from 0.001 to 0.005 are classified as moderate glint and coloured red to white. The tilting of the 
SeaWiFS sensor significantly decreases the amount of data affected by sun glint. 

The LEO sensor we are considering key for aquatic ecosystem processes will need to be carefully 

designed to avoid sun glint as much as possible given that low latitudes earth observation will be a 

crucial component of this sensor mission with its abundance of shallow water tropical ecosystems 

such as coral reefs, tropical seagrasses etc. Sun glint avoidance thus will be a combination of (for 

polar orbiting LEO) overpass time and tilt of the sensor. In the case of orbits such as that of the ISS 

(from about 51.6 ° N to 51.6 ° S with a 3 to 5 day cadence and associated varying overpass times) 

this becomes more intricate to solve. 

3.3.3 Polarization 
Accurate knowledge of polarization sensitivity prior to launch is critical. Top of atmosphere 

radiances can have a high degree of linear polarization of up to 75 % (Takashima and Masuda, 1985), 
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but tend to be less than 50 % (Meister et al., 2011). This linear polarization primarily arises from 
atmospheric Rayleigh single scattering with a maximum perpendicular to the direction of light 
propagation and at longer wavelengths (Chandrasekhar, 1961). Light reflected by water is 
horizontally polarized and maximum at the Brewster angle (53.1°) while the upwelling light tends to 
be vertically polarized (Sabbah and Shashar, 2007). Hence, coastal imagers have demanding 
polarization sensitivity requirements coming from the high spatial heterogeneity, high contrast and 
significant water and atmospheric polarization (Van Gorp et al., 2010). 

The impact of polarization on retrieved geophysical parameters is a result of the convolution of the 
top of atmosphere radiance polarisation with the instrument polarization sensitivity, which for water 
colour sensors typically ranges by design from 1 to 4 %. Most of this sensitivity can be attributed to 
polarization sensitive instrument components such as gratings, specular reflectance on optical 
surfaces at high incidence angles and dichroics. Such low polarization sensitivity can still lead to 
errors in the atmospheric correction resulting in significant errors (as much as 10 % at 443 nm) in the 
retrieved water leaving radiance (Gordon et al., 1997).  

HICO’s design-level polarization sensitivity was for example estimated at 4 % @900 nm, 2 % @450-
650 nm and higher around 350 nm (Lucke et al., 2011). The polarization sensitivity of MERIS was 
about 3 % without a depolarization scrambler but reduced to only 0.25 % when one was introduced 
(Qian, 2016). The PACE upper limit for polarization sensitivity is 1 % while it is recommended that it 
be characterized to within 0.2 % to reduce the uncertainty in TOA radiances due to polarization to 
less than 0.1 % for a large majority of global ocean cases (Meister et al., 2011).  Ocean colour 
instruments, such as CZCS, SeaWiFS and MERIS all opted for polarization scramblers in order 
sufficiently reduce polarization sensitivity. Polarization scramblers, such as the dual Babinet, 
however have a negative impact on the spatial resolution and, to a lesser extent, on signal to noise 
ratio (Collett, 2005, Caron et al., 2012). 

Thus for the proposed aquatic ecosystem Earth observation sensor we are selecting the PACE 
requirements of an upper limit for polarization sensitivity of 1 % while it is recommended that it be 
characterised to within 0.2 % to reduce the uncertainty in TOA radiances due to polarization to less 
than 0.1 % for a large majority of water bodies. Regardless of the polarization response, it is 
generally accepted that this instrument behaviour should be characterized to 0.5 % uncertainty and 
that characterization should be applied on-orbit to remove the effects of response to polarization. 

3.4 Instrument characteristics & response functions 
Numerous instrument artefacts contribute to the uncertainties in the at-sensor radiance and, thus, 
to errors in retrieved geophysical parameters. Instrument artefacts include diverse effects such as 
striping, response linearity, polarization sensitivity, stray light, out-of-band responses, electronic 
cross-talk, etc. Minimizing the uncertainties associated with such artefacts is especially important for 
inland and coastal imagers given the high contrast between dark water and bright clouds, ice on 
water and/or adjacent land areas with high reflecting vegetation or soils and sands. 
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Figure 3.3 (after Meister et al., 2011) Degree of linear polarization (a dimensionless quantity from 0 to 1, 
where 0 is unpolarised light and 1 is completely linear polarised light) of the TOA radiances for an orbit of 
MODIS Aqua data over the Pacific Ocean for August 14, 2000. MODIS Aqua equator crossing time is 13:30; 
for a sensor with a noon crossing time a more symmetric distribution around nadir is expected. 

Experience with heritage sensors indicates that instrument artefacts can be reduced to <0.5 % of 
TOA radiances, given an effective approach for characterizing the performance and degradation of 
all detectors (e.g., SeaWiFS), although this success has not been realized for most heritage 
instruments. The requirement for the planned PACE mission is that the total uncertainty for a given 
observation of TOA total radiance be less than 0.5 % of the typical top-of-atmosphere clear sky 
ocean radiances (Ltyp) after vicarious calibration (assuming a perfect vicarious calibration). (PACE 
Mission SDT Report, 2012). Assuming that these artefacts are uncorrelated, the total radiance 
retrieval uncertainty caused by instrument artefacts is equal to the root mean of squares of each 
individual artefact. Hence, given such a demanding requirement, artefacts need be minimized both 
at the instrument design level and through a stringent pre-launch characterization for best post-
processing correction. For some artefacts, post-launch characterization can and/or need also be 
done given performance degradation over time. 

3.4.1 Spectral response function 
Spectral calibration includes the determination of the centre wavelength, the spectral response 
curves and spectral distortions (also known as smile and keystone). For this, the instrument needs to 
be illuminated with a monochromator. As the spectral response is likely to change as function of 
position across track (smile effect), the whole FOV needs to be characterized. This is done for 
discrete positions across the swath by tuning the wavelength in small steps (typically 1/10 of spectral 
bandwidth) across the spectral range of the instrument. The centre wavelengths should be 
determined at an uncertainty <0.5 nm. 

 Spectral smile is a systematic variation in the band centre across detectors and needs to be assessed 
accurately. 
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3.4.2 Radiometric response 
Absolute radiometric calibration: Absolute radiometric calibration is required to convert sensor 
digital read out (DN) to radiance in physical units. The instrument needs to be illuminated by an 

absolute calibrated light source that is SI (International System of Units) traceable to standards from 

a National Metrology Institute. An uncertainty of ~5 % is sufficient if the instrument is equipped for 

on-orbit radiometric calibration or vicarious calibration is performed. Absolute radiometric 
calibration is also performed at different temperature regimes to characterize the change in the 

instrument response to variation in instrument temperature, which can occur on-orbit. 

Relative radiometric calibration: The variation of responsivity over all pixels in the array which needs 

to be established in order to get a spatially and spectrally homogeneous image. The relative 
radiometric calibration uncertainty should be <0.5 %.  On board flat fielding methods exist using an 

on-board uniform reference. Measurements at detector level are required to obtain the intrinsic 

variation of responsivity of the different detector pixels, called Photo Response Non-Uniformity 
(PRNU). Furthermore measurements at the integrated instrument level are required to quantify the 

variations over the FOV due to slit width variations and optical vignetting. 

Dark current and bias determination: Even when no photon falls on the detector, a current will be 

produced. These electrons are thermally generated and will contribute to the overall signal obtained 
in a regular measurement. The detector electronics generates an offset signal called bias to avoid 

conversion of negative signals in the A/D converter. This bias level can be obtained by extrapolating 

dark current measurements at different integration times to a 0 sec integration measurement. The 

uncertainty should be below ±2 DN for the sum of dark current and bias. 

Linearity characterization: Ideally, the measured signal increases linearly with increasing input 

radiance and increasing integration time. This signal gain is called response. It depends on 

wavelength, temperature, detector size, doping etc. and can show deviations from linearity, in 
particular at low radiance levels and close to detector saturation. Nonlinearity should be measured 

at an accuracy which allows determining the response at an accuracy of 1 %.  

Developments with optical detectors that have a designed non-linear response may become a 

solution allowing fine resolution at lower radiance levels and less fine resolution at higher radiance 

levels. 

3.4.3 Polarisation response 
It is important to derive the degree of polarisation sensitivity as function of wavelength and spatial 

position. As mentioned before for the proposed aquatic ecosystem earth observation sensor we are 

selecting the PACE requirements of an upper limit for polarization sensitivity is 1 % while it is 
recommended that it be characterized to within 0.2 % to reduce the uncertainty in TOA radiances 

due to polarization to less than 0.1 % for a large majority of water bodies 

3.4.4 Optical and electronic crosstalk (After Oudrari et al., 2010): 
Electronic and optical crosstalks are radiometric challenges that often exist in the focal plane design 
in many sensors. Crosstalk is a response in any detector when a single detector (or band) is 

illuminated. For the NPP VIIRS instrument, optical crosstalk caused by light scatter with the 

instrument’s filter array, was shown to be dependent not only on the source wavelength, but also its 
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polarization and spatial characteristics (e.g. angular scatter). The new generation of environmental 
satellites will be required to develop a comprehensive specification definition for both optical and 
electronic crosstalk, as well as reliable test procedures to collect appropriate data in the pre-launch 
phase. Crosstalk Influence Coefficients (CICs) derived from prelaunch spectral measurements will be 
the foundation of this methodology to assess crosstalk impact on MODIS-like sensor radiance, and 
associated geophysical algorithms. Analysis of crosstalk contaminated products will indicate 
potential problems, and help to determine if a hardware fix and/or on orbit mitigation plan is 
necessary. The Oudrari et al., (2010) proposed method uses crosstalk characterization data sets from 
newly designed sensors in conjunction with heritage space based data to assess the crosstalk impact 
on the data measurement, and the higher level products. It is also important to separate band-to-
band optical crosstalk from Out-of-Band (OOB) contamination, and to include crosstalk polarization 
and measurement uncertainties. OOB sensitivity is a non-zero response outside the nominal band 
width and usually occurs when filters are used for spectral band separation as the filters may not 
filter out all light beyond the intended wavelength range. 

3.4.5 Striping and detector to detector response 
With more than two decades with ocean and coastal waters imaging, it is well recognized that 
striping and detector to detector artefacts (i.e. non-uniformity) can result in large variability across 
uniform water bodies. The impact is, in general, more appreciable over dark waters. The use of large 
detector arrays, i.e., pushbroom or 2D frames, complicates the design and pre-launch activities in 
characterizing the uniformity. Some examples are MERIS, MODIS, OLI, IKONOS, QuickBird, Worlview-
2 and -3 and Landsat-8 for which such artefacts are pronounced. For these reasons, the PACE 
mission has considered designing a single-detector imager to avoid/minimize striping/banding 
effects.  

3.4.6 Stray light and stray light rejection 
Stray light can be defined as radiant energy that reaches a detector element from a wavelength or a 
direction other than those intended in the nominal design. This includes scattering, diffraction, self-
emission (at longer wavelengths only), diffuse and specular reflection from surfaces (the later 
resulting in spatial and spectral ghosts) whose overall effect is the contamination of the at-sensor 
radiance. Stray light can be minimized using instrument outer and inner baffles, coatings or 
anodization, enclosures and careful design, manufacturing and cleanliness of the optical 
components (Fest, 2013). Minimizing stray light also helps improve the utility of high contrast 
imagery such as with adjacent land, cloud or ice on water contamination, especially in the infrared 
where water leaving radiance is much smaller than that of contaminating sources. For MODIS, as 
much as half of the ocean pixels are found to be within the Aqua stray light mask (5x7 pixels), which 
significantly reduces the useful data available (Meister and McClain, 2010). For all these reasons, 
careful stray light design and correction is needed for an aquatic ecosystem imager. 

Legacy spaceborne instruments such as HICO, with a stray light requirement of <1.0 %, and MERIS, 
with an achieved performance for stray light <1.4 %, certainly provide guidelines for an achievable 
requirement. For PACE, the stray light contamination for the instrument is required to be less than 
0.2% of the typical radiance 3 pixels away from a cloud (PACE Mission SDT Report, 2012). Such 
demanding requirements cannot be achieved solely with careful instrument design and post-
processing is required to correct for stray light. Correction algorithms to reduce the stray light 
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induced errors have been developed and used (Bourg et al., 2012 and Yeh et al., 1997). However, 

when stray light contamination is relatively large at the instrument level, such as with SeaWiFS, 

correction does not suffice to meet the most demanding requirements (Barnes et al., 1995). 

Spectral stray light assessment: stray light or light from different spectral orders which will 

contribute light outside the designated spectral band. The measurement of the spectral response 

with the collimated monochromator or tuneable laser can be used to search for light outside the 

spectral bandwidth corresponding to the wavelength of the transmitted light. This will be especially 

useful to look for spectral ‘ghosts’ giving line emissions and which is easier to pick up from the 

measurement with the spectral source. For faint stray light spread over a larger wavelength region, 

the laser or monochromator measurement is likely to be insufficient. An alternative method, is to 

use a panchromatic light source with a sufficient and stable intensity and spectrum in combination 

with well-known band pass filters that block parts of the wavelength range. 

Spatial stray light assessment: Through reflections (internal or external to the instrument) light can 

fall outside the intended light path on the detector. Two types of spatial stray light are considered: 

one coming from a light source inside the FOV (i.e. in-field stray light) and the other from outside 

(i.e. out-of-field stray light). Stray light will affect the radiometric accuracy and will also limit the 

detection of faint structures (i.e. reduced contrast). It is difficult to quantify stray light through test 

measurements and it needs to be carefully analysed through optical modelling. 

3.4.7 Band to band registration 
Depending on the way an earth observation scene is imaged (in both a spatial and spectral 

dimension) the band to band registration needs to be as accurate as possible. There are another two 

dimensions of relevance here: the geospatial dimension and the time dimension. The geospatial 

dimension is when identical features have identical geolocation in all bands. Another important and 

often ignored dimension is that of having all spectral bands image the same target area at the same 

time or as close as possible to this ideal situation. The main reason for this high time synchronization 

requirement is that sun glint from capillary waves, refractive waves, , wind waves and facets and 

swell at the surface of water bodies can vary quickly. Sun and sky glint removal algorithms rely on 

simultaneous imaging of e.g. VIS and NIR bands used to correct for sun and sky glint of visible bands. 

3.5 Calibration and validation 

3.5.1 Pre-launch calibration and characterization 
Careful pre-flight calibration and characterization under operating environmental conditions, such as 

space based temperature and vacuum, and the full range of possible viewing conditions, are 

essential to ensure that mission requirements are met over the sensor’s range of operating 

conditions, to determine all the influencing parameters on the sensor response and to accurately 

initialize the different parameters of the sensor model. Previously we discussed the spectral, 

radiometric and polarisation responses. Here we add some details to the geometric and radiometric 

pre-launch calibration and characterisation. 

The goal of geometric calibration of an optical sensor system is to model the line-of-sight for each 

pixel element of the imaging system. This is usually performed pre-flight in laboratory conditions 

where precise measurements enable to characterize the various aspects of the system. These 
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measurements should include: The determination of the line of sight vector of each detector of the 
hyperspectral sensor; the determination of the boresight angles of the camera (angle x, angle y, 
angle z in degree) for calculating the transformation between the body fixed frame and the spectral 
imager frame and the characterisation of the spatial distortions over the FOV (i.e. keystone or band-
to-band misregistration). 

Radiometric pre-flight calibration. As discussed before the sensor needs to be illuminated by an 
absolute calibrated light source that is SI (International System of Units) traceable to standards from 
a National Metrology Institute. An uncertainty of ~5 % is sufficient if the instrument is equipped for 
on-orbit radiometric calibration.  The following calibrations need to be done: relative radiometric 
calibration; dark current and bias determination and linearity characterization. 

It is becoming apparent to the calibration community that drift in the spectral response is possible, 
and needs to be deconvolved from the radiometric response change across all bands simultaneously.   

3.5.2 Post-launch calibration and validation 
Variations in the characteristics of the instrument are likely to occur in orbit due to outgassing 
phenomena during launch, aging of the optical parts, thermal stresses and cosmic ray damage. This 
makes it necessary to perform post-launch calibration and validation to guarantee that both 
spectral, radiometric and geometric requirements are met.  

Different factors such as the launch shock and gravity release might reduce the post-launch sensor 
geo-pointing accuracy. Therefore in-flight geometric calibration is required to estimate and monitor 
on a regular basis the exterior orientation (i.e. boresight misalignment angles) and interior 
orientation deformations at different conditions. In-flight geometric calibration can be performed, 
depending on the spatial resolution, through GCP (Ground Control Point) matching using reference 
datasets from other missions e.g. the Landsat Global Landsat Survey GLS 2010 dataset. For a 
decametric GSD the geometric calibration can be based on existing databases of geometric 
reference sites as already being used for high resolution missions as SPOT or Pléiades .  

After launch, the calibration process will be based on both on-board calibration facilities and 
vicarious methods (based on sensing a reference target a the earth’s surface). In fact, as these 
methods are using independent facilities, a statistical processing is usually achieved to deliver an 
accurate estimation of the calibration. Usually, two main families are distinguished: one using on 
board facilities and the second one based on sensing reference targets (vicarious calibration).  

For the calibration of the reflective band on-board lamps and solar diffusers are often used. The 
diffuser plates are not perfectly Lambertian and therefore the Bi-directional Reflectance Distribution 
Function (BRDF) of the diffusers has to be determined with pre-launch measurements. As solar 
diffusers might degrade over time, their stability should be monitored through on-board solar 
diffuser stability monitoring devices or using a second diffuser and/or the use of vicarious calibration 
approaches. 
 
In the absence of on-board calibration devices, a series of approaches exist based on vicarious 
methods that use specific terrestrial or space targets, considered as secondary references. Vicarious 
calibration methods will enable the monitoring, through sensor independent means, of the 
calibration evolution of the instrument during its life. Close to absolute calibration can be achieved 
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based on acquisitions over some sites, recommended by the CEOS IVOS group, with synchronous 
ground and/or aircraft measurements-although the atmospheric contribution to this signal will 
always introduce some additional uncertainties. To ease access to data from Land Equipped Sites, 
RadCalNet, a Radiometric Calibration Network of Automated Instruments, is currently being 
established by a dedicated working group with members from different international (space) 
organizations. AERONET-OC (Ocean Colour) sites record both sun and sky irradiance as well as water 
leaving radiance autonomously and therefore allows for validation at low radiances. Absolute 
calibration can be complemented through the use of the Rayleigh scattering over deep ocean 
oligotrophic sites to calibrate the VIS spectral range. Inter-band calibration can be verified through 
observations over sun glint or deep convective clouds. The temporal drift can be estimated using 
continuous acquisitions over temporally stable sites such as dedicated ocean deep water sites with 
low reflectance such as the MOBY (near Hawaii) and BOUSSOLE (near Villefranche, France) optical 
buoys, deserts or through lunar calibration which allows to perform stability monitoring with sub-
percent per year precision. Lunar calibration requires a platform manoeuvre to observe the moon. 
Inter-instrument calibration can be achieved with quasi simultaneous acquisitions of different 
sensors with similar spectral bands. 

In-flight spectral calibration, i.e. retrieving the shifts in the centre wavelengths of on-orbit imaging 
spectrometers,  can be performed through on-board spectral calibration mechanisms such as 
monochromatic light sources such as LED’s, lasers, rare earth-doped diffusers, solar diffusers or 
Fraunhofer lines on a white diffuser. In the absence of on-board spectral calibration devices a series 
of approaches exist based on solar or terrestrial atmospheric features (for example the oxygen 
absorption feature centred at 762 nm) in the measured data. 

3.6 Platform requirements including geometric stability 
Earth observation sensors are becoming more and more versatile. Initially most global earth 
observing sensors had a fixed look angle in a near polar orbit enabling creation of a multi-decade 
acquisition of sun synchronous images suitable for trend detection. Most of these EO sensors were 
relatively large and heavy. With the advent of SeaWiFS in 1997 platform sensor combinations were 
enabled to turn upside down in space in order to perform a moon surface radiometric and spectral 
calibration (as the earth observing sensor-optics was then pointed at the moon). In the late nineties 
very high spatial resolution sensors commencing with IKONOS followed in the 2000’s by Quickbird, 
WorldView and many more, had increasingly sophisticated and versatile pointing capabilities. These 
pointing capabilities allowed these narrow swath, high spatial resolution sensors, with a nominal 
nadir looking repeat cycle of e.g. one image every 60 days, to increase this to one image every day, 
albeit with significant pointing variability: up to 40 degrees in any direction. The advantages are 
clear: despite having only one or a few sensors with very high spatial resolution it becomes possible 
to image a selected area of interest much more often. It also becomes possible to obtain stereo pairs 
of images in quick succession. The drawback is that the images are no longer sun-synchronous, the 
look angles between successive images  may vary significantly in both across and along track 
direction with the ensuing variations in radiance path length, atmospheric scattering, atmospheric 
and water body polarization, water surface incidence angle affecting Fresnel reflection etc. 
Moreover it becomes more difficult to build a time series of areas that are not imaged due to the 
sensor pointing at another target. 
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This pointing capability of course does offer the option of pointing away from the sun thereby 

avoiding sun glint (although the opposite is true too). 

Whether a proposed aquatic ecosystem earth observing sensor should have a fixed nadir or sun 

avoiding off-nadir tilt angle or whether it should have flexible pointing capabilities will depend on 

the degree to which certain end-user requirements need to be met. This will also depend on chosen 

solutions for achieving both high spatial, spectral, radiometric and temporal requirements. E.g. a 

suite of satellite sensor-platforms could all be looking at fixed angle off-nadir for sun glint avoidance 

whereas a single sensor-platform may need pointing capability to e.g. be able to image an extreme 

event such as a flood, a river flood plume or an algal bloom or a coral bleaching event. A 

combination of LEO and GEO sensors would also be able to solve these often conflicting 

requirements. 

The geo-location calibration is of paramount importance over aquatic ecosystem targets such as 

freshwater macrophytes, optically shallow water seagrass, macro-algae, benthic micro-algae and 

coral reef sites to detect change. It needs to be less than 0.4 of the pixel size and preferably smaller 

(e.g. 0.1 of the pixel size). In many cases in coastal waters and over coral reef there are much less 

well characterised GCP’s available. 

3.7 End to end simulator 
To demonstrate the feasibility of a mission, modelling tools are necessary. Two ways are developed 

depending on the scene type given as inputs: either a synthetic aquatic ecosystem with an adjacent 

landscape or a scene acquired from an airborne or spaceborne hyperspectral sensor. The resulting 

tools are described below. 

Several end to end simulators already exist like the EnMAP simulator or the Comanche-Cochise one 

(Miesch et al., 2005) used for the SPECTRA (Schaepmann et al., 2004) and HYPXIM (Briottet et al., 

2011) hyperspectral missions. A general flowchart of such a simulator is proposed in Figure 3.4. 

As inputs, such a simulator has to consider scenarios of various complexities: 

• Hyperspectral airborne or spaceborne acquisition expressed in radiance unit. To have a 

good estimation of the ranges of upwelling environment radiances, the at sensor radiance 

needs to be atmospherically corrected to retrieve the surface reflectance Rrs, and then this is 

used to simulate the corresponding signal at TOA sensor level. Such a procedure allows 

simulation of multiple environmental water surface state and atmospheric conditions. 

• Spectral reflectances from existing data bases such as SEABASS or MERMAID for coastal 

waters and oceans or LIMNADES for lakes. A dedicated macrophytes, seagrass, macro-algae, 

coral reef and associated benthic cover types does not yet exist but is advised ( see e.g. 

Dekker, 2006). 

• Synthetic spectral reflectance simulated from radiative transfer tools like Hydrolight 

(Mobley) or WASI (used for the simulations in chapter 2 and the Appendix A.2.). Such tools 

can simulate the bottom of atmosphere spectral reflectance from an accurate description of 

the aquatic ecosystem and its corresponding geo-physical variables.  

We note that for heterogeneous ecosystems like coastal zone or inlands water, the radiative 

contribution of the environment is crucial. The Comanche-MODTRAN tool uses a Mont Carlo kernel 
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to deliver a good estimation of the Earth atmosphere coupling irradiance and the environment 

upwelling radiance. Although the exo-atmospheric solar irradiance is not polarized, the photons 

crossing the atmosphere and reflected by the Earth are polarized; it is possible to estimate the 

polarized TOA radiance by using MODTRAN-P radiative tool or OSOAA (Chami et al., 2015). Further, 

different atmospheres, aerosols (type and abundance) and acquisitions geometry can be considered 

using e.g. Multi-Angle Implementation of Atmospheric Correction (MAIAC) products. 

Thus, the top of atmosphere (TOA) radiance is estimated from these inputs and a radiative transfer 

code such as: MODTRAN, DISORT or three atmospheric correction codes used by Martin et al., 

(2017) for Brazilian rivers and floodplains, or Second Simulation of a Satellite Signal in the Solar 

Spectrum (6SV),  or ACOLITE and Sen2Cor with the highest spectral resolution. Note that the 6SV 

code is not suited for hyperspectral simulations, its spectral resolution (2.5 nm) is not sufficient to 

model the TOA signal for 5 to 8 nm bandwidth. To estimate the resulting signal collected by the 

hyperspectral camera at the output of the electronic chain (expressed in digital count units) several 

contributions have to be taken into account such as: 

• Spatial module: to simulate the corresponding spatial resolution of the sensor and taking 

into account its Modulation Transfer Function (MTF) able to simulate various spatial 

aberrations caused by, e.g. the telescope optics, the double slit and the curved prisms (e.g. 

EnMap simulator). 

• Spectral module: to perform the spectral resampling, taking into account the spectral 

response functions in all spectral bands, non-uniformities in the spectral domain such as 

smile, polarization, and an optional spectrometer shift in the spectral dimension (e. g. 

EnMap) 

• Electronic module: to convert the radiance in digital count by taking into account the 

artefact of the electronic detection chain (noises, temporal shift…) 

The resulting digital output signal needs several pre-processing steps to overcome the deterministic 

artefacts introduced by the instrument itself.  

From a radiometric and geometric modelling of the camera, a pre-processing is necessary which 

depend on its design such as dark current correction, inter-detector sensitivity correction, smile etc. 

The resulting signal is then converted into output radiance taking into accounts the calibration 

accuracy. From the output radiance, atmospheric compensation has to be achieved to retrieve the 

bottom surface reflectance as follows: estimation of the atmospheric state: using the image itself 

(estimation of the water vapour content, aerosol type and abundance…) or from externally obtained 

data (atmospheric profiles, AERONET and AERONET-OC data, RAdCalNet data and similar data 

sources). Using this information, the TOA signal is corrected to retrieve the bottom of atmosphere 

(BOA) surface reflectance Rrs. The resulting BOA reflectance image can be georeferenced or not. At 

this level, biophysical parameters can be retrieved following the approach outlined in  4.1. 
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Figure 3.4 General flowchart of an End-to-End simulator 
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4 Aquatic ecosystem earth observation enabling 
activities 
STEEF PETERS, KEVIN R. TURPIE, SINDY STERCKX, PETER GEGE, XAVIER BRIOTTET, MARTIN BERGERON, 
NICOLE PINNEL, ARNOLD G. DEKKER, CLAUDIA GIARDINO, VITTORIO E. BRANDO AND BRINGFRIED PFLUG. 

4.1  Introduction 
In previous chapters we defined why and what an aquatic ecosystem satellite sensor should be able 
to measure, and determined the satellite platform capabilities to ensure that the right type of 
measurements over aquatic ecosystems from space can be achieved; the final  component are the 
enabling activities. Enabling activities take place mostly after launch, although preparatory activities 
are possible before launch.  These activities vary from ensuring the top of atmosphere (TOA) 
radiance is measured in a well-characterized way, the satellite sensors’ degradation can be 
monitored during time, the atmospheric correction methods are robust, the air water interface 
mitigation measures and corrections (sky glint, sun glint and whitecaps) function well and the in situ 
instruments provide proper vicarious calibration and validation data. By performing these enabling 
activities the quality of the input data to the algorithms that extract the desired aquatic ecosystem 
information (see chapters 1 and 2) is assured. Chapter 4 provides a condensed overview of steps and 
methods to do this. In general, the following steps are required after an earth observation image is 
acquired: 

1. Decide if a pixel offers an unobstructed view at surface water (so filter out effects of clouds, 
cloud shadows, land, objects etc., in the pixel). 

2. Decide if a direct calculation of water parameters can be done on the TOA reflectance  
3. If not, obtain the Bottom of Atmosphere reflectance by correcting for atmospheric 

influences. 
4. Since the BOA water leaving radiance or reflectance signal will often contain additional 

reflections (sun- and sky glint) at the water surface, apply a correction for this additional 
reflectance. 

5. The transport of light through the air-water interface alters the signal so a correction should 
be applied to arrive at the desired quantity: i.e. water leaving radiance or reflectance directly 
above or below the air-water interface. 

6. To obtain a measure of aquatic ecosystems variables from the water leaving reflectance, 
water quality, bathymetry or emerse, submerged or benthic mapping algorithms are used.  

7. Establish the quality of the product by validation or uncertainty (propagation) analysis. 

Each step can be implemented as a calculation recipe (algorithm) containing simplified or extensive 
physical descriptions of the radiative transport processes involved. This chapter focusses on the 
main categories involved, namely: 

4.2 Atmospheric correction methods. 
4.3 Corrections at the air-water interface. 
4.4 How to estimate aquatic ecosystem variables from water leaving radiance or reflectance using 
in-water algorithms (optically deep and optically shallow waters). 
4.5 Sources of uncertainties in the obtained quantities. 
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4.5 In-situ measurements for algorithm development and calibration designed to make optimal use 

of the proposed sensor(s). 

4.6 Instrumentation and campaign requirements for validation. 

4.2 Atmospheric correction methods 
Atmospheric correction is the inversion of radiative transport models that characterise the 

atmospheric optical properties in various degrees of detail. This correction is necessary to obtain the 

bottom of atmosphere (BOA) or surface reflectance or water leaving radiance of imaged water 

pixels. Pixels that are contaminated by dense smoke, fog, clouds or cloud shadows need to be 

filtered out prior to atmospheric correction. As seen in Chapter 2 of this report, the aquatic 

ecosystem main radiative transport processes are influenced by the aquatic optical active 

components, the substratum or benthic vegetation reflectances and pure water itself. In the case of 

floating plants or floating algae their reflectance is the sought after parameter. The atmosphere 

needs characterising as follows: 

• Absorption by absorbing aerosols and gasses (O2, O3, NO2 and H2O) 

• Rayleigh scattering by small molecules of non-absorbing atmospheric gasses (CO, N2O, CH4 

and CO2) 

• Mie scattering by larger molecules (aerosols and water vapour) 

• Polarization effects  

In addition to this, scattering by ice crystals in partially transparent cirrus clouds and aircraft 

contrails, lens effects at cloud edges and “the adjacency effect” have an influence of the observed 

TOA signal of a water pixel. Depending on location, time and topographical height, different 

mixtures of atmospheric optical active components and variable path lengths lead to different 

effects on radiative transfer. To estimate the true water leaving radiance from the TOA radiance it is 

necessary to remove the reflection at the water surface by sun- and sky glint and whitecaps. A good 

introduction to the underlying physics is given by Mobley et al., 2016. 

Note that as the number of spectral bands and their resolution increases (e.g. from a few 

multispectral bands to through to imaging spectrometry) it becomes increasingly feasible to use the 

satellite sensor spectral data itself to perform the required corrections to estimate the atmospheric 

parameters from the image itself. Alternatively, by flying our proposed sensor(s) in tandem with 

atmospheric characterisation satellites, the required atmosphere parameterisation data can be 

obtained. 

The steps that need to be considered to assess the BOA (water leaving radiance or reflectance at or 

just below water level) are as follows: 

1. Select pixels that are in the water, not obscured by clouds, cloud shadows, smoke, fog, 

aircraft contrails etc., and not affected by reflectance of floating objects and emerging 

vegetation. 

2. Identify pixels that are affected by sun/sky glint and whitecaps reflection and either discard 

them or correct for this additional reflectance source. 

3. Correct the observed signal for gaseous absorption using assumed values or external data 

sources for O2, O3, and NO2 etc. 
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4. Correct the observed signal for Rayleigh scattering using knowledge about topographical 
location, height (water bodies exist from -430 m to in excess of 5900 m altitude) and time. 

5. Estimate the amount of water vapour and aerosol scattering per pixel (or per image) and 
correct the signal for water vapour and aerosol absorption and scattering. 

6. Correct for contamination of the pixel reflectance from nearby, high reflecting targets 
(adjacency effect). 

7. (Optional) Couple the atmospheric correction to an in-water model to solve the RTE for the 
total water-atmosphere system and obtain optical closure. 

There are several types of approaches to estimate the true water leaving radiance or reflectance 
from the compound signal measured at TOA. Overviews of such approaches have been published by 
e.g. (Goyens et al., 2013; Muller et al., 2015; Minu and Shetty, 2015; Emberton, 2016 etc.). All 
authors conclude that there is currently not a single suitable method for all situations. Situations 
that need further development include (very) turbid waters and conditions with strongly absorbing 
aerosols. Adjacency correction methods need to be addressed properly. A method to pre-select a 
suitable inland waters atmospheric correction based on optical water type classification was recently 
proposed by Eleveld et al., 2017. It is desirable, however, to have one generic method for 
atmospheric correction over inland, coastal and coral reef waters. 

Based on inquiries amongst participating scientists the GLaSS project (www.glass-project.eu) made a 
list of scientific and operational criteria that may help to select an appropriate atmospheric 
correction scheme for inland waters. These include: 

• Adaptable to a multitude of sensors (legacy missions, Sentinel-2, Sentinel-3, L8, future 
missions). 

• Preferably open access, well documented, no other commercial software required, future 
maintenance assured. 

• Wide range of AOT and atmospheric models. 
• With adjacency correction (possibility). 
• Configurable for optical properties of atmosphere and water. 
• Configurable for ancillary data (e.g. O3, NO2), site elevation 
• Suitable physical range of the underlying radiative transfer model  
• Pixel wise retrievals of AOT and H2O vapour 

Here we briefly discuss three approaches to atmospheric correction: 

1. Methods inherited from ocean colour remote sensing: 

These include methods based on more or less analytical solutions to the RTE (Gordon & Wang, 1994, 
Ruddick et al., 2000, etc., see Goyens et al., 2013). They start with assuming that there is no water 
leaving signal in the NIR and derive aerosol optical properties from that assumption. For turbid 
waters the zero reflectance in the NIR is not true, which lead to approaches deriving aerosol optical 
properties from SWIR bands where the water absorption is so high it overwhelms any backscattering 
by suspended matter (e.g. Vanhellemont and Ruddick, 2015; Moore and Lavender, 2011; Mazeran et 
al., (2011)). An alternative approach is to derive aerosol concentrations from nearby land pixels 
(Guanter et al., ;2010, Pons et al., 2014 and Xu et al., 2016).  
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2. Methods that invert RT codes (LOWTRAN, MODTRAN, 5S, 6S): 

These methods were often applied for atmospheric correction of airborne remote sensing over 
inland and coastal waters. A recent review was given by Minu and Shetty, 2015. Additional studies 
evaluating such approaches are e.g. Sterckx and Debruyn (2004); Montes and Gao (2004); Adler-
Golden et al., (2005); Brando and Dekker (2003); Giardino et al., (2007); Guanter et al., (2010); 
Knaeps et al., (2012); Sterckx et al., (2015); Bagheri et al., (2004) and Peters et al., (2008). Although 
the advantage is that the radiative transport is well described by the standard code, one must pre-
select an appropriate atmosphere and aerosol type which is subsequently kept constant over the 
image.  

3. Methods that simultaneously retrieve atmospheric and water components: 

Several spectral matching or neural network techniques (Doerffer and Schiller (2007); Schroeder et 
al., (2007),; Heege et al., (2005); Steinmetz et al.,(2011); Kuchinke et al., (2009) and Xu et al., (2016)) 
which simultaneously retrieve atmospheric and water components have been developed. These 
algorithms can manage optically complex waters from inland to coastal. It should be noted that 
because the parameters of the atmosphere, the air-water interface and the water body are retrieved 
simultaneously an error in the coefficients of any parameter will impact the retrieval of all 
parameters, whereby some effect may cancel each other out and some effects may exacerbate 
errors.  

The use of hyperspectral data will reduce the ambiguity in the retrieval of the different parameters. 
Alternatively use can be made of other satellite sensors that are designed to measure these 
atmospheric variables- of course there needs to be near simultaneous measurement by this suite of 
sensors. Extension of the wavelength range either into the ultraviolet or into the SWIR will improve 
the removal of atmospheric effects.  

4.3 Air-water interface correction       
For water targets the ‘non-lambertian’ air-water interface is an extra complication. Only photons 
which have penetrated the air-water interface and been backscattered or absorbed by the water or 
have reached the benthos and are reflected upwards to the water surface contain useful 
information. Photons from the sun and sky immediately reflected by the air-water interface 
represent an unwanted component of the water leaving reflectance or radiance. Therefore a 
correction for the air-water interface reflection is required. The air-interface correction includes 
correction for sun glint, sky glint and reflection from white caps. Of course it is preferable to avoid 
sun glint as much as possible by appropriately tilting the sensor and planning the orbit inclination 
and overpass time (see chapter 3). 

A number of methods have been developed to correct the sun glint signal over water bodies. The 
underlying algorithms fall into two categories: geometric models based on the statistics of the slope 
distribution of waves in the open ocean (Cox and Munk, 1954), and radiometric or image (pixel) 
driven models based on the spectral distribution of the light reflected at the water surface.  

The first approach is applicable to open ocean imagery based on a probability distribution formulism 
with pixel resolutions well beyond that of wave facets and wave slopes in the order of 100 – 1000 m, 
while the second one is used for images with a higher resolution resolving individual waves and 
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wave facets and for coastal and inland waters where local wind fields make the wind-wave-statistics 
of the open ocean unreliable. As this study recommends a maximum spatial resolution of ~33 m with 
preferable spatial resolution of less than ~17 m the only methods applicable are those that can work 
on a pixel by pixels basis with possibly highly varying contributions of sky and sun glint. 

A review of both approaches is given by Kay et al., (2009), see Figure 4.1.  All available correction 
methods for coastal and inland waters contain some residual effects in the water leaving radiance or 
reflectance products (Kay et al., 2009; Martinez-Vicente et al., 2013). Groetsch et al., (2017) provide 
a detailed discussion of required corrections for in situ above water spectroradiometric 
measurements which are akin to a one pixel measurement from an earth observing imager. 

For optically shallow waters care must be taken to avoid using spectral bands that have a 
measurable substratum or benthic vegetation signal at the surface as the sun and sky glint removal 
method may also remove some of this desired benthic signal. Use of NIR wavelength for sun and sky 
glint correction is recommended. 

It may be useful to define threshold levels for acceptable residual tolerable sun glint levels. For 
example the MODIS quality flag defines a threshold contribution of 0.005 reflectance as a ‘high’ glint 
and 0.001 as a ‘Moderate’ one. Specifications for glint tolerance also imply that the fraction of such 
contaminated pixels within a given scene be defined which is usually set at 5%. Finally, it has been 
shown that while sun glint contamination can be well corrected for retrieved ocean colour products, 
the effect of sun glint on retrieved atmospheric products, e.g. aerosol optical thickness, can still be 
significant (Wang and Bailey, 2001).  

 

Figure 4.1 IKONOS images of Glover’s Reef, Belize, showing effects of different glint correction tools. (a) 
Image with no glint correction, showing regions used for correction and analysis. Image corrected using the 
method of Hedley et al.,2005 (c) Lyzenga et al., 2006 , (d) Goodman et al., 2007 In each case (iii) is a pseudo-
true colour representation (blue = 445-516 nm, green = 506-595 nm, red = 632-698 nm), (iv shows four 
wavebands for the line in (a) (iii) Source: Parts of Figure  in Kay et al., 2009. 
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4.4 How to estimate aquatic ecosystem variables from water leaving 
radiance or reflectance   
The aim of the proposed earth observing sensor is to be able to assess the state, condition and trend 
of inland, estuarine, deltaic and near coastal waters - as well as mapping macrophytes, macro-algae, 

seagrasses, coral reefs and shallow water bathymetry.  

From the optical signal, one can derive optically active water quality parameters including 

concentrations of phytoplankton (by its proxy chlorophyll-a) as an indicator of the trophic state, 
concentration of cyanobacteria (by the proxy pigment cyanophycocyanin or cyano-phycoerythrin), 

dissolved coloured organic components, suspended matter as tracer for transport of pollutants and 

optical properties like turbidity, vertical attenuation, Secchi depth and euphotic depth. Some 
parameters serve direct monitoring requirements (e.g., chlorophyll-a, transparency and the ratio 

green algae / blue green algae are required for the European Water Framework Directive). The 

water reflectance itself is a recently established essential climate variable (GCOS, 2016).  

Recent studies indicate furthermore the possibility to resolve inherent optical properties (total 
spectral absorption and backscattering, possibly separated into absorption and backscattering of 

each of the optically active substances) and to classify the spectral optical water type. With 

increasing spectral resolution such as proposed here it will also become possible to determine 
particle size distributions of the suspended matter, to establish sources of CDOM (terrestrial or 

aquatic origin), fractions of organic to mineral composition of suspended matter and functional 

phytoplankton types ( e.g. how different types assimilate carbon or nitrogen etc.) 

In optically shallow areas, in addition to the water column optical active constituents and the 
resulting light absorption and backscattering properties, the bottom type can be classified, the state, 

condition and trend of the benthic vegetation cover and corals can be determined and the water 

depth can be determined from the optical measurement.  

Earth observation cannot directly assess water quality parameters that do not have a direct 

expression in the optical response of the water body. These parameters include many chemical 
compounds such as nutrients. However, in some cases, non-optical products may be estimated 

through inference, proxy relationships, or data-assimilation with remotely-sensed optical properties 

of products such as nitrogen, phosphate, organic and inorganic micro-pollutants, and dissolved 
oxygen. However, these relationships are empirical, may not be causal, and may have a limited 

validity range. By making use of the combined information in directly measurable optical properties, 

it is possible to derive management relevant information about trophic state, environmental flows 

(e.g. inorganic and organic sediment fluxes), and carbon and primary productivity.  

Since different optical active water constituents as well as living materials at the surface in the water 

column or on the benthic substratum have different effects on the reflectance spectrum, it is 

possible to retrieve their concentrations from the shape and amplitude of the spectrum. Algorithms 

for these calculations have been designed in various degrees of complexity discussed next. 

In Chapter 1 we discussed the types of algorithmic approaches for translating the measured spectral 

reflectance from a water body to water-quality variables; and these range from: (i) empirical 

approaches; (ii) semi-empirical approaches; (iii) physics-based, semi-analytical spectral inversion 
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methods to (iv) Artificial Neural Network (ANN) and Machine Learning Methods and finally (v) Object 

Based Image Analysis (OBIA) methods. Increasingly use is made of several of these techniques 

together: e.g. performing atmosphere correction using a ANN approach and then performing a semi-

analytical inversion on the remote sensing reflectance or water leaving radiance at the surface 

(Brando et al., 2012) or using a radiative transfer based atmospheric correction for a seagrass or 

coral reef environment and then applying OBIA to map and classify the benthic habitat etc. 

Most algorithms use the atmospherically corrected water leaving radiance or water leaving 

reflectance as input. These algorithms always use the result of an (inherently imperfect) atmospheric 

correction as input. An alternative approach is to use the Top of Atmosphere (TOA) signal that is (in 

general) more than 90% (in the blue) to less than 50% (in NIR) determined by atmospheric optical 

contributions. Recently Bottom of Rayleigh (BOR) atmospheric correction has been proposed which 

at a minimum corrects the signal for different heights of the atmospheric column. All three 

approaches start with a level of uncertainty in the input signal.  

Most algorithms that use TOA reflectance to derive water parameters rely on using spectral band 

ratios or differences that focus on specific spectral absorption or fluorescence features such algal 

pigment absorption or fluorescence, whereby the exact spectral band that does contain a pigment 

absorption or fluorescence feature is divided or subtracted by a baseline created using 2 or 3 

spectral bands that do not contain the pigment absorption or fluorescence signal. These methods 

are usually semi-empirical (although they may be parametrised using RT or semi-analytical models), 

reasonable robust but may be affected by strongly varying atmospheric and surface conditions. 

Matthews et al., (2012), Odermatt et al., (2012) and Gower et al., (2007) provide overviews of many 

aquatic ecosystem algorithms including pigment absorption and pigment fluorescence algorithms. 

All algorithms and specifically algorithms that use water leaving reflectance or radiance are 

dependent on the quality of the input spectrum (see section on atmospheric correction). Depending 

on available parametrization, calibration and validation data and application requirements (e.g. local 

application vs regional or global application) the algorithms are designed to use the full spectrum, 

spectral subsets, retrieve single or multiple parameters and have a variety of solution methods. 

Empirical approaches statistically relate field samples of one water-quality parameter of interest to 

reflectance values measured by a satellite or airborne sensor. While there is no need to understand 

the underlying physical relationships in such algorithms (such as atmospheric and underwater light 

processes), they do require coincident field measurements to calibrate the relationships for specific 

water bodies. The empirical algorithms struggle when water column constituents lie outside the 

range upon which the pertinent statistical relationship was based (in both space and time) and are 

not easily adapted to new satellite sensors. Empirical methods are also less reliable when 

undertaking retrospective monitoring, especially when lake water-quality characteristics may 

change. Empirical algorithms for optically shallow waters often cannot unravel the water column 

depth and optically active constituents from the substratum reflectance. Empirical algorithms 

require in situ measurements (preferably) concurrent with the overpass of the sensor. The in situ 

measurements have to be those that will be derived from the imagery: in most cases for optically 

deep waters this will be chlorophyll a, cyanobacterial pigments, other algal pigments, CDOM, TSS 

(often as NAP), Secchi Disk transparency, vertical attenuation of light and turbidity. For optically 
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shallow waters the in situ measurements additionally focus on water column depth, macrophytes 
and substratum composition. 

Semi-empirical methods are generally used to estimate a single water constituent, based on the 
causal relation between the signals captured by optical remote sensing instruments and parameter 
variations. These relations are included in the statistical analysis by focusing on well-chosen 
wavebands or wavebands combinations, which correlates with the optically active water quality 
variable of interest (i.e. CHL, TSS, CPE, CPC, CDOM) or a transparency based variable ( Secchi Disk 
transparency, Kd or turbidity). By design these algorithms can sometimes partly annul some of the 
atmospheric and water surface effects. Semi-empirical algorithms, however, also suffer from (i) 
extrapolation errors beyond the range of constituents observed; (i) the requirement to establish 
new, semi-empirical algorithms when switching sensors or applying the algorithm to new water 
bodies; less reliability in retrospective monitoring when lake water-quality characteristics change. 

Physics-based, semi-analytical spectral inversion methods require proper parameterisation of the 
bio-optical model or radiative transfer computation method representative of the aquatic ecosystem 
imaged. These inversion methods can cope better with varying water concentrations, varying 
sources of optical active water constituents and are highly suitable for retrospective analysis. For 
physics based inversion methods applied to optically shallow waters it is also essential to have a 
representative spectral library of the freshwater macrophytes, the seagrasses, macro-algae, and 
corals and associated benthic cover and benthic composition materials. 

Both semi-empirical (to a lesser degree) and physics based inversion methods require representative 
parameterisation: the field or laboratory based water column light absorption and backscattering 
properties (inherent optical properties (IOPs) of the phytoplankton, the CDOM, the TSS (as NAP) as 
well as the field-based measurements of total spectral absorption and backscattering properties in 
combination with the concentrations of algal pigments, CDOM and TSS (as NAP). By dividing the light 
absorption and backscattering of each constituent with its concentration we can obtain the 
concentration specific inherent optical properties (SIOPs) which are the essential input into physics 
based inversion methods. 

In principle it is possible to calculate Kd, Secchi Disk transparency and turbidity from these spectral 
absorption and backscattering measurements. It is important to realize that if a water body 
(optically shallow or optically deep) is parameterised well there is no longer any requirement for in 
situ measurements except for validation purposes. 

In chapter 2 (+ Appendix A.2.) we present examples of all these variables and parameterizations as 
they were used for the spectral simulations using the WASI 2D model. 

The most important aspects that determine the robustness, accuracy, complexity and optical closure 
of spectral inversion are: 

1. The (forward) bio-optical model formulation. Increasing computer capabilities lead to 
increased possibilities to approach the problem with complicated models. But the first 
models (e.g. Dekker, 1993) used simplifications of the RTE in water (Gordon, 1975, first term 
only). Later approaches (Brando et al., 2003, 2009) use the polynomial optical models 
published by Lee (1998), Albert and Mobley (2003) or Park and Ruddick (2005). A fast 
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version of the Hydrolight code was produced recently to facilitate future direct inversion 
using this complicated model (Mobley, 2011). From an extensive algorithm comparison 
experiment for more extreme variations of water quality, the main conclusion was that 
approaches that include a more complete optical model, perform more successfully 
(Nechad, 2015).  

2. The formulation of the total absorption and backscattering terms. Although this seems trivial 
and standardized, there are variations of the SIOP models where some variables are 
considered together e.g. the NAP absorption with the CDOM absorption (Doerffer et al., 
2007), or variables are omitted (e.g. the spectral variation of the phycocyanin absorption 
(Simis, 2005, Simis and Kauko, 2012)). For optically shallow waters, additionally the water 
column depth and bottom reflectance need to be assessed.  

3. The model inversion approach and optical closure criterion. Most spectral fitting algorithms 
use some form of the X2 parameter to determine the fit of modelled to measured spectrum 
(e.g. van der Woerd and Pasterkamp, (2008), Brando et al., (2012)). Iterative approaches use 
convergence of a parameter as stopping criterion which is not necessarily an indication of 
optimal optical closure (Yang et al., 2011). Mobley (2005) used a look-up-table approach 
where least-squares minimization was used as closure criterion. Dekker et al., (2011) provide 
an overview of inversion models for optically shallow waters that detail many of these 
approaches. 

4. The knowledge on SIOPs and their variability. Some algorithms assume constant SIOPs over 
the image (e.g. Van der Woerd and Pasterkamp, 2008), others permutate over possible sets 
of SIOPs to make sure that a pixel is treated with its own optical properties (e.g. Brando et 
al., 2012.,; Tilstone et al., 2012). 

4.4.1 How to discriminate between optically deep and optically shallow waters 
Lodhi and Rundquist (2001) define that Optical Deep Waters (ODSs) are waters where the depth of 
the water is no less than three times the observed Secchi disk depth (SDD), as the bottom effect on 
the upwelling spectral signal may then be considered insignificant. Otherwise it is taken as Optical 
Shallow Waters (OWS), as the water leaving signals are influenced by either the bottom or 
submerged aquatic plants. Brando et al., (2009) extended this concept based on imaging 
spectrometry by defining OSWs as waters where the signal from the substratum is directly 
measurable at the surface and the substratum signal at the surface is higher than a threshold based 
on the noise properties of the hyperspectral data, while in ODWs no signal from the substratum is 
measurable. The waters where the contribution from the substratum is measurable but the 
substratum signal at the surface is close to or lower than the threshold are identified as “quasi-
optically deep waters” (Brando et al., 2009). 

4.4.2 Optical deep waters 
A procedure of semi-analytical modelling for optically deep waters is firstly to use Rrs data at multiple 
bands to deduce the IOPs (inherent optical properties) of water, then based on the relationships 
between IOPs and water components, to establish and solve a series of linear or nonlinear equations 
to obtain water constituents concentrations (Lee et al., 1998, Carder et al., 2004). Lee et al., (2002) 
also developed a multiband quasi-analytical algorithm for ODWs to derive inherent optical 
properties, which is based on remote sensing reflectance derived from the radiative transfer 
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equation, and values of total absorption and backscattering coefficients that are analytically 
calculated from values of Rrs. 

In case bio-optical models can be written as a linear equation system fast matrix inversion methods 
have been successfully applied in inland waters (Hoogenboom and Dekker, 1998, Keller, 2001, 
Giardino et al., 2007) and coastal waters (Brando et al., 2003, Brando et al., 2012). 

Advanced spectral inversion procedures are typically built on matching spectral measurements with 
bio-optical forward models derived spectra by means of different inversion techniques. For example, 
Mobley (2005) used a look-up-table approach where least-squares minimization is used to found the 
closest match between the image spectrum and a database of remote sensing reflectance 
constructed with the radiative transfer numerical model Hydrolight (Mobley, 1994). Other inversion 
techniques such as iterative non-linear optimization (or curve-fitting) methods were used (e.g. Lee et 
al., 1999; Zhang et al., 2008) to provide an estimation of the parameters iteratively, when the 
gradient of a figure merit (e.g. the root mean square error) reached the minimum. The inversion can 
also be based on a neural-network inversion scheme that was for instance used by Doerffer and 
Schiller (2007) and Vilas et al., (2011) for retrieval of water quality parameters in optically complex 
waters.  

All these inversion procedures can retrieve multiple optical water quality properties at once from a 
single optical reflectance spectrum (Keller, 2001) and are based on the inversion of a physically 
based model describing the relationship between the reflectance, optical properties of water 
components and constituent concentrations (e.g. Brando and Dekker, 2003). Semi-analytical 
approaches and especially spectral fitting methods show improved accuracy for estimating water-
column composition (Dekker et al., 2001), are capable of assessing the error in the estimation of 
water-quality constituents, are repeatable over time and space, are transferable to new water 
bodies and other sensors, and can be retrospectively applied to image archives (Dekker at al., 2006, 
Odermatt et al., 2012). This means that retrospective monitoring of optical water-quality changes is 
possible, by processing the satellite image archives going back 40 years, to assess the impacts and 
mitigation of various stressors to the system. 

4.4.3 Optically shallow waters 
Algorithm approaches for OSWs in principle can be based on the same spectral fitting procedures as 
for ODWs but the signal of the substrate with certain attenuation in the water column has to be 
taken into account additionally. Substrate types and depth in shallow water habitats have been 
estimated with a variety of techniques, which includes classification techniques (e.g. Leiper et al., 
2014), spectral inversion of bio-optical modelling (e.g. Dekker et al., 2011) and an assemblage of 
those methods (e.g. Purkis and Pasterkamp, 2004).  

Theoretically, spectral inversion techniques allow water constituents, bottom depth and fractional 
cover of up to three substrates types per pixel to be simultaneously retrieved. As illustrated in the 
review by Dekker et al., (2011) most physics-based spectral inversion methods are based on the 
initial simplified semi-analytical model for shallow water remote sensing developed by Lee et al., 
(1999; 1998), which is based on the analytical model proposed by Maritorena et al., (1994). The 
inversion scheme can be using either look-up tables or iterative optimization. 
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Lee et al., (1999; 2001) used an inversion- optimization approach to simultaneously derive water 
depth and water column properties from hyperspectral data in coastal waters. The method 
developed by Lee et al., (1999; 2001) has been extend by incorporating linear un-mixing of the 
benthic cover. Albert and Gege (2006) and Giardino et al., (2007) used multiple substrate classes 
(bare sand and submerged macrophytes) in littoral zones of lakes, Goodman and Ustin (2007) and 
Klonowski et al., (2007) integrated a semi-analytical inversion model with a linear un-mixing of three 
substratum types for coral reef environments. 

For the look-up table approach (Louchard et al., 2003 ; Mobley et al., 2005 ; Hedley et al., 2009), the 
radiative transfer model is used in forward mode in order to build a pre-computed database of 
spectra corresponding to different combinations of depth, concentrations, and bottom type. Most of 
these methods are pixel based. Jay and Guillaume (2014) recently developed a hybrid method, in 
which estimates of water column parameters are retrieved by maximizing the likelihood function 
based on a statistical sample and a radiative transfer model.  

Practically, a combination of sensor characteristics (e.g., multi-spectral or hyper-spectral 
resolutions), water column properties (e.g., turbid or clear waters) and substrate types (e.g., clear 
sand, green, yellow or brown macro-algae; seagrasses, corals) determine the possibilities to obtain 
accurate estimates (e.g. Botha et al., 2013, Hedley et al., 2012) for all parameters. Botha et al., 
(2013) clearly demonstrated that by going from multispectral to hyperspectral sensing greater depth 
penetration and improved benthic classification is achieved. 

In optically shallow waters the two extreme cases (a very thin clear water column in optically shallow 
waters or an almost optical deep water column) lead to either poor water column composition 
estimation (as the reflected signal from the water column is very small) or poor bathymetry retrieval 
(as the substratum reflected signal is very faint at the surface) and high uncertainty and substratum 
discernibility (e.g. Brando et al., 2009; Botha et al., 2013). 

4.4.4 Towards global algorithms 
A recommended pathway for longer-term operational use is to develop a robust, semi-analytical 
inversion method for application globally based on having access to relevant spectral bands (see 
recommendations in chapter 2 with enhanced bands for near future planned missions, or preferably 
26 spectral bands for aquatic ecosystem variable estimation, augmented by 15 spectral bands for 
atmospheric and air-water interface corrections, or imaging spectrometer measurements). Artifical 
Intelligence (ANN and MLM) and Bayesian statistics approaches can be used to enable smart 
parametrisation of these inversion models. Semi-empirical methods can be used in the interim, as 
they often are reasonably robust for a category of water types and for a single EO sensor system and 
for a single variable such as e.g. chlorophyll a. Empirical approaches are only useful as proof of 
concept but, in general, are not recommended if all optically active substances (Chl, CDOM, TSS, 
CPC, CPE and resulting physical properties of turbidity, Secchi Disk depth and Kd) as well as emerse, 
submerged macrophytes or benthic substratum cover and types need to be determined. Object 
Based Image Analysis (OBIA) approaches are being used increasingly for benthic mapping, but are 
usually developed for a specific region with a specific habitat incorporating expert knowledge about 
the geomorphology, habitat and the species interrelationships. How these OBIA methods 
extrapolate to other areas is unclear. 
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4.4.5 Scientific algorithm development challenges 
When progressing from multispectral sensors with selected broad bands at key wavelengths to 

hyperspectral systems with sufficiently fine resolution narrow spectral bands, globally valid 

algorithm development could focus on advanced hyperspectral algorithms. With full spectral 

information each curve and slope will be an expression of the combined influence of all optical 

active constituents. Combining that information with representative spectral measurements of IOPS 

and SIOPs over the whole spectral and water constituent concentration range as well as spectral 

substratum measurements will allow for more accurate or more differential algorithms. Effectively 

this amounts to inverting forward simulation models (see chapter 2 Appendix) that e.g., underpins 

the results in chapter 2. 

In future the potential to map small shifts in the spectrum caused by variable depths in the water 

column (due to the increasing pure water absorption beyond the orange to red wavelengths), as well 

as multiple look angles from the EO sensor, if detectable, may enable depth discrimination within 

the water column of optically active substances bridging the gap between detailed three 

dimensional aquatic hydrodynamic and ecological models and remote sensing.  

With increasing spectral resolution it will also become possible to determine particle size 

distributions of the suspended matter, to establish sources of CDOM (terrestrial or aquatic origin), 

fractions of organic to mineral composition of suspended matter and functional phytoplankton types 

(e.g. how different types assimilate carbon or nitrogen etc.). 

4.5 Sources of uncertainties in the obtained quantities 
Besides the uncertainty in the TOA measurement of reflectance (and therefore the compromise 

between spatial, spectral and radiometric resolution (see Ch.2) as well as platform and instrument 

capabilities (Ch. 3)), the uncertainty in the retrieved water quality parameter depends on the 

parameterisation of the algorithm as well as the choices made for the various algorithms for 

atmospheric correction, air-water interface corrections and in-water algorithms. All aspects of the 

algorithms lead to uncertainties, which include the mathematical formulation of the algorithm, its 

sensitivity to uncertainties to variables such as atmospheric, its parameterisation with laboratory 

and field based (concentration specific) inherent optical properties and representativeness of the 

substratum spectral library. Recent publications about the topic include Lee et al., 2010, Melin et al., 

2016, Salama, 2012. The IOCCG report “Uncertainties in Ocean Colour Remote Sensing” will 

contribute to the discussion and understanding of all involved uncertainties. In general, it has been 

concluded that ultimately, the uncertainty in the (S)IOPs of air and water will remain the main 

potential source of error in water quality products. Therefore more spectral information (at higher 

resolution with higher sensitivity) is required. 

4.6  In-situ measurements for algorithm parameterisation, validation 
and calibration designed to make optimal use of the proposed 
sensor(s) 

4.6.1 IOP and concentration measurements 
Algorithm development for future satellite sensors requires in situ instrumentation with dedicated 

spectral and radiometric capabilities. Based on the simulation studies in chapter 2 of this report it 
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may be concluded that any spectral measurement should have a spectral resolution around 5 nm or 
better. Pigment absorption characteristics (e.g. Stomp et al., 2007, Simis and Kauko, 2012) combined 
with spectral shifts caused by the depth of the water column (simulations in Ch2 and Appendix) 
requires sensitive well calibrated (spectral and radiometric) in-situ and laboratory equipment. 

Table 4.1 Measurements for bio-optical forward and inverse model parameterisation and optical closure 
measurements (Dekker & Hestir, 2012) 

 

To further our understanding of optical transfer in the whole space-atmosphere-water system and 
to improve algorithm approaches, one should consider moving to a more rigorous framework of 
optical closure. This means that an in-water bio-optical model (coupled with an air-water interface 

 water quality variables 
HPLC Spectro-

Photometer 
Cell 
ID & 
count 

LISST-

100  
HS-
6/bb9  

ac-s  SD Spectro-
radiometer 

 Lab-based sample analysis In situ submerged 
supervised 

Above/ in 
water 

Algal pigment 
related 
measurements 
(concentration and 
in-vivo absorption 
spectrum) 

CHL    N/A     
CPC    N/A     
CPE    N/A     

Algal cells Cell counts N/A N/A       
Dissolved organic 
matter related 
measurements 

CDOM N/A  N/A N/A N/A    

Particulate matter 
related 
measurements 

Particle size 
distribution 

  Algal 
cells 
only 

     

 NAP N/A  N/A      
 TSM N/A        
Light related 
measurements 

Kd N/A Calc    Calc   

 Turbidity N/A Calc    Calc   
 SD  Calc    Calc   

 Highly Suited    Suitable   Potential    Not Suitable                         Variable has a partial effect but 
cannot be used directly 

CHL=chlorophyll; CPC=cyano-phycocyanin; CPE=cyano-phycoerythrin; CDOM =coloured dissolved organic 
matter; TSM=total suspended matter; NAP = Non-algal particulates; Kd= vertical attenuation of light 
coefficient; HPLC=high performance liquid chromatography; SD=Secchi disk transparency, Calc=calculated. 
Other instruments are available from other manufacturers. LISST-100 is a submersible laser scattering 
instrument that measures concentration and particle size spectra, pressure and temperature. HS-6 is a 
backscatterometer at 6 wavelengths and BB9 is a backscatterometer at 9 wavelengths. AC-S is a 
hyperspectral light absorption and beam attenuation meter. Note that the instruments in this table are 
meant as example instruments only- this report does not endorse any make of instrument. 
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transfer model) should simulate the same remote sensing reflectance as observed just above the 
surface (or modelled and observed just above the atmosphere). Optical closure indicates that all the 
in situ measurements of concentrations and inherent optical properties (and/or assumed model 
parameters, see Table 4.1.) are in accordance with the measured apparent optical properties. A 
rigorous hyperspectral optical closure approach requires information on concentrations and 
knowledge of optical properties of optical active components in water and atmosphere at preferably 
at minimally double the spectral resolution than the satellite sensor.  

In the application field of inland waters, progress towards generic algorithms is hampered by the 
large diversity of in-situ instrumentation and protocols for the parameters that are measured (e.g. 
chlorophyll-a, cyanobacterial pigments, CDOM and suspended sediments: see GLaSS protocols 
report at www.glass-project.eu). Since there are many different ways to measure an optical 
parameter or optical property, with many different protocols it is important to ensure optical closure 
for each measurement set, to reduce uncertainty. Quality control is especially necessary for the 
measurement of algal pigments as there are many steps involved before this pigment can be 
measured accurately (be it spectrophotometric, fluorometric or by HPLC). Examples of currently 
available instruments for the measurement of optical properties and concentration are given in 1. In 
general one can comment that the higher the expected spectral variability is in the optical property, 
the better the spectral resolution should be of the measurement. Pigment absorption characteristics 
(e.g. Stomp et al., 2007; Simis & Kauko, 2012) combined with spectral shifts caused by the depth of 
the water column (simulations in Ch2 and Appendix A.2.) necessitate highly sensitive (spectral and 
radiometric) in-situ equipment. Going to full optical closure, it is advised  to measure absorption, 
(back)scattering and apparent optical properties (AOPs) with the same high spectral resolution.  

With future global fine multispectral or hyperspectral capability, the challenge is to move from local 
applications to regional and global applications while maintaining a high quality. This requires a high 
degree of standardization of protocols and the design of data collection methods that work on the 
regional to global scale. One can think of automated reflectance and IOP collection along transects: 
see e.g. the protocols project, examples of automated absorption measurements using a flow 
through Point Source Integrating Cavity Absorption Meter (Wollschläger, 2013).  

There is a structural lack of regular in-situ measurements of Kd, SD, turbidity, CDOM absorption, 
Suspended matter (as NAP), chlorophyll-a and other accessory pigments and backscattering, 
absorption and cell counts of identified species (groups) such as cyanobacteria. A challenge will be to 
overcome this lack of systematic in-situ data using new automated sensor types (e.g. DNA 
identification, flow through absorption meters, flow cytometers with optical characterisation 
capabilities) and harmonize existing measurements by inter-comparison exercises (of protocols, 
calibrations and instruments). Costs for automated measurements should be reduced to allow larger 
scale data collection.  
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Table 4.2 Water measurements that can be routinely done by water quality management agencies 

 

 

water quality variables 

 Spectro 
CHL 

Spectro 
CDOM 

Gravi-
metric 

Fluoro
meters 

Cell ID 
& 
count 

Kd/ 
PAR  

single λ 
laser 
NTU 

Multi-λ 
laser 
NTU 

Spectro-
radio 

Lab-based sample analysis In situ submerged supervised Above/in 
water 

CHL          

CPC          

CPE          

Algal cell counts          

CDOM          

NAP          

TSM          

Particle size 
distribution 

    Algal 
cells 
only 

    

Kd          

Turbidity (NTU)          

Secchi Disk 
Transparency 

         

  Highly Suited          Suitable            Potential           Not Suitable            Variable has a partial effect but cannot be used 
directly 

SPECTRO=spectrophotometric; CHL=chlorophyll; CPC=cyano-phycocyanin; CPE=cyano-phycoerythrin; CDOM 
=coloured dissolved organic matter; TSM=total suspended matter; NAP = non-algal particulates; Kd= vertical 
attenuation of light coefficient; HPLC=high performance liquid chromatography; SD=Secchi disk transparency; 
NTU=nephelometric turbidity units.  

 

4.6.2 Measurements for model/algorithm verification and validation 
Routine in situ measurements by inland, coastal and coral reef management agencies are useful for 
parameterizing (semi)empirical methods as well as for verifying/validating aquatic ecosystem 
algorithms. Many water authorities are showing an interest in aquatic ecosystem remote sensing, to 
fill in spatial and temporal gaps in in situ measurement programs and because of potential and 
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health, safety and environmental considerations. These authorities should be stimulated to engage 
in further (regional-global) protocol standardization and start collecting simultaneous supportive 
measurements. Table 4.2. provides an overview routine in situ measurements and recommended 
autonomous in situ sensors for deployment by aquatic ecosystem management authorities. 

For further operationalization of earth observation for inland to coastal to coral reef parameters 
some developments of in-situ and laboratory water quality measurements may be of use or are 
required. Increasingly relevant management authorities are experimenting with, or deploying 
operationally, in situ autonomous high frequency sensor such as algal pigment- and CDOM 
fluorometers. Some near future development suggestions could be: 

1. In situ measurements of reflectance should be introduced widely and move to high 
frequency automated sampling above and/or below the water surface to enable frequent 
match-ups with satellite data as well as provide diurnal reflectance variability assessments of 
the water studied. 

2. Next generation cheap and accurate sensors (preferably autonomous, high frequency 
observing systems) are required: bio-optical measurements (flow-through absorption and 
scattering meters) for forward and inverse physics-based retrieval model parameterization 
and validation as well as DNA probes for fast organism identification. 

3. Data collection from autonomous platforms should be encouraged: such as floating and 
airborne drones, gliders, UAV’s etc. Protocols for such applications need to be defined.  

4. The collection of low cost low quality high volume “citizen observatory” type of instruments 
should be encouraged with a requirement for strict protocols to ensure data quality 
standards. 

4.6.3 Reflectance measurements   
Reflectance measurements are a crucial part of in-situ data collection for vicarious calibration of the 
TOA radiance, algorithm parameterisation (e.g. via substratum and substratum cover types such as 
seagrasses, macro-algae, benthic micro-algae coralline algae and corals) design, validation and 
testing. Having many multispectral bands or hyperspectral reflectance observations (see Ch. 2 
recommendations) from satellites will contribute to achieving optical closure, since the knowledge 
of the continuous shape of spectra will: 

• track the TOA radiance measurement performance of the sensor leading to minimised per 
spectral band errors 

• allow to have information on the spectral slopes of absorption and reflectance peaks while  
filling in spectral regions that are normally not measured but contain reference information 

• allow to assess accuracy/deviations in the error-prone regions in the blue (large ambiguities 
between optical properties of water and air optical components) 

• allow improved substratum classification to deeper depths (Botha et al., 2013) 
• allow improved water depth estimation for bathymetry purposes 
• etc. 

Large sets of well characterised reflectance measurements over large areas open up new ways to do 
algorithm development e.g. by means of understanding different types of water (possibly leading to 
optical classification (Eleveld et al., 2017). Water reflectance measurements are also the only way to 
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directly validate atmospheric correction schemes, although the use of nearby land based or floating 
pseudo invariant reflectance targets can also be used.  

Continuously measuring surface radiance or reflectance instruments can be mounted on any type of 
superstructure (bridge, tower etc.) and do not suffer from biofouling (although they do need 
cleaning from dust and protection from insects, e.g. spider webs). At locations where there is a 
larger public interest in water quality (e.g. swimming water locations with potential infestations of 
cyanobacteria) the continuous measurements can be combined with local (citizen) observations to 
identify e.g. the presence of floating layers. Subsurface measurements of benthic materials (or 
taking the benthic materials to the surface and measuring them under controlled irradiance 
conditions) are also key inputs to optically shallow water algorithms. 

The quality of reflectance measurements is dependent on the physical properties of the device and 
the quality of the calibration, e.g.  spectroradiometer intercomparisons (e.g. (Hommersom, 2012; 
Zibordi et al., 2012)). The reason why intercomparisons are necessary is that instruments with 
different technical specifications are on the market with various forms of calibrations. Especially in 
the more challenging dark waters (high spectral absorption) or very turbid waters (high spectral 
backscattering), measurement uncertainty becomes an issue, as these processes attenuate light 
thereby reducing photon counts. 

By  involving aquatic ecosystem management authorities in making above (and below) water in situ 
spectroradiometer measurements,  especially as continuously measuring instruments, they get 
accustomed to optical water quality measurements using spectral information ( similar to measuring 
reflectance from space) as well as providing high temporal frequency  information (e.g. leading to 
better understanding of diurnal variability). 

4.6.4 Atmosphere characterisation measurements 
Retrieval of water constituents, water properties or benthic cover requires accurate correction of 
atmospheric effects in the imagery. Therefore an important part of all validation activities is 
performing measurements for characterization of the atmosphere. AERONET (a fully automated 
spectrometer) provides long-term, globally distributed observations of spectral aerosol optical 
thickness (AOT), inversion products, and precipitable water column (Holben, 1998). For oceans, 
coastal waters and inland water bodies the AERONET-OC systems measure water leaving radiance 
systematically as well. The inversion products from AERONET and AERONET-OC systems cover 
optical, microphysical and radiative properties useful for validation of atmospheric correction 
algorithms and satellite measurements. A new system is being created called RadCalNet which will 
focus initially on land based fiducial reference measurements.  Whilst AERONET systems provide 
globally distributed observations from fixed positions, localized field campaigns will require more 
flexible instrumentation. A good choice for mobile use are handheld sun photometers like the 
Microtops instruments. Coupled analysis of Microtops sunphotometer and ozonometer 
measurements give vertical column precipitable water content, vertical column ozone content and 
vertical column AOT-spectra. AOT spectra are used for computation of the Ångstroem-Exponent, 
which gives an indication of the aerosol type (Pflug, 2013). 
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4.7 Instrumentation, protocols and data collection strategies for 
validation 

4.7.1 Towards fiducial reference measurements 
Currently the Ocean Colour community is attempting to achieve a high quality standard in in-situ 
reflectance measurements for satellite validation. This is addressed in the ESA project Fiducial 
Reference Measurements for Ocean Colour. The objective of this ESA FRM4SOC project is to 
establish and maintain SI traceability of Fiducial Reference Measurements (FRM) for satellite ocean 
colour. It implements some of the CEOS Ocean Colour-Virtual Constellation INSITU-Ocean Colour 
Radiometry white paper recommendations.  

Activities in the FRM4SOC project are to: 

1. Develop and implement an instrument laboratory and field inter-comparison experiment for 
FRM radiometers (round robin) with mandatory participation of National Metrology 
Institution(s). 

2. Foster and enhance international Ocean Colour validation activities.  
3.  Study what is required in terms of infrastructure for vicarious calibration and validation for 

Europe for the next 20 years leading to firm recommendations on the way forward for the 
next generation of European Ocean Colour vicarious calibration/verification infrastructure.  

We strongly recommend a similar activity for non-oceanic aquatic ecosystems involving inland 
waters, coastal waters and optically shallow waters (e.g. seagrasses, macro-algae and coral reef 
environments). 

4.7.2 Requirements for next generation field radiometer systems for validation 
purposes 
Depending on the mode of application and the specific purpose, researchers and users should be 
able to choose between fixed position stations, handheld radiometers and radiometers on floating 
and flying platforms (buoys and airplanes/drones). Important factors are: 

1. Instrument stability, sensitivity to environmental factors and calibration drift should be 
reduced by smart instrument design. 

2. The prescribed viewing geometry should be strictly observed and known. 
3. The calibration of the instrument is valid and performed properly, preferably with some 

form of certification. 
4. For high quality (FRM) satellite validation measurements, the SI traceability and the 

instrument characterization are essential (sensitivity, stray light, thermal drift, etc.). 
5. For validation and under-flight studies the spectrometer should have equal or a significantly 

higher spectral resolution than the satellite/aircraft/drone.  
6. For application in challenging environments (high sediment concentration, studies of bottom 

vegetation etc.) a combination of submergibility, high sensitivity and extended spectral 
range is required (e.g. observation capability at NIR with relative high sensitivity). 

7. To maximize the chance for satellite and in situ match-ups autonomous fixed position 
instruments are essential (but can be systematically deployed from boats). 
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8. Managing sub-optimal measurements (e.g. Brando et al., (2009)) and correction of 
unwanted artefacts by sun glint, sky glint and whitecaps should be investigated and 
implemented. Such methods should lead to preferred or even standardized approaches. 

9. To prevent data loss, connection to the internet and automated upload of the 
measurements is recommended. For satellite cal/val it would be beneficial if databases 
would provide an interface to specific Cal/Val databases. 

10. Instrument handling (especially for handheld systems) and data processing should be easy 
enough to allow deployment by non-specialists. 

11. Although low cost high frequency citizen observations is seen as a means to increase the 
number and spatial spread of observations, significant attention will need to be spent on 
making these measurements robust, effective and systematic by developing strict and easy 
to use protocols. 

4.7.3 Data collection strategies and priorities for calibration/validation research 
Data quality is of critical importance for Earth observation applications. Calibration, vicarious 
calibration and validation (often referred as Cal/Val) correspond to the process of updating and 
validating on-board and on-ground configuration parameters and algorithms to ensure that the 
product data quality requirements are met. To meet the baseline product quality requirements, a 
well-defined Cal/Val plan will be systematically applied. In complement, the operational monitoring 
of the resulting product-quality is ensured through well-defined Quality Assurance and Quality 
Control (QA-QC) procedures. The challenge is to ensure that measurements and methods yield 
consistent and accurate geophysical parameters even though measurements are often made with a 
variety of different instruments, under different observational conditions, and using different 
methodologies. 

Satellite missions are typically accompanied by a high-level description of all the validation and 
(vicarious) calibration activities sought for the different levels of data delivery (from Level-1 to Level-
2A). The documentation typically includes a list of reference test sites for performing calibration and 
validation activities during the lifetime of the mission. In many cases field and airborne campaigns 
are part of the Cal/Val plan in support of the satellite mission specification and implementation. 

Therefore, a smart set up of field campaigns and priorities for Cal/Val purposes is briefly presented 
for supporting this aquatic ecosystem earth observing sensor. Cal/Val items regard every data level 
(e.g. geometric and radiometric accuracy of Level- 1B data) encompassing prelaunch calibration, 
post-launch on-board vicarious calibrations and ground-reference methods. In this document, we 
focus on field data gathering and priorities for Cal/Val of Level-2A data of inland and coastal waters. 
Considering that these waters show an extremely high variability in aquatic optics, a generally low 
water leaving signal and a high degree of change during time, the design of a Cal/Val plan in support 
of this aquatic ecosystem earth observation sensor mission is challenging. A post-launch validation 
plan based on three approaches is proposed:  

1. Autonomous ship based systems provide a suitable platform to collect spatially temporally 
diverse continuous field reference data for addressing a minimum required number of spectral 
matchups for validating satellite imagery corrections. A set of hyperspectral radiometer sensors 
that measure sea surface, sky radiance and total irradiance have been successfully mounted to 
gather reference remote sensing reflectance for validating ocean colour sensors (e.g. Brando et 
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al., 2016; Costa et al., 2016; Simis and Olsson, 2013). In many cases the ship based systems 

include probes for gathering water quality measures (e.g. fluorometry, turbidimetry and 

thermometers) relevant for satellite products validation. 

2. Permanent fixed platforms and moorings supported by dedicated calibration and maintenance 

regimes provide the best quality observations for long-term calibration data. Prime example is 

given by  the NASA initiated AERONET – Ocean Colour (AERONET-OC), which provides the 

additional capability of measuring water-leaving radiance in seven channels with CE-318 sun-

photometers (used in AERONET) installed on offshore platforms like jetties, lighthouses, 

oceanographic and oil towers. It is strongly recommended to equip such systems with 

hyperspectral sensors in order to cater to the increasing amount of multispectral and 

hyperspectral sensors planned and proposed. Continuous autonomous hyperspectral 

measurements have been used to obtain intra- and inter-daily data in very productive waters 

(Bresciani et al., 2013). In many cases the fixed platforms include probes for gathering water 

quality measures (e.g. CDOM and algal pigment fluorometry, turbidity and thermal 

measurements) relevant for satellite products validation (Zappalà et al., 2004). 

3. Field campaigns carried out during the sensor overpass aimed at the EO-product validation have 

been largely used to collect reference and validation data. Such type of campaigns are 

specifically designed to account for the spectral variability on water types at the local scale, and 

they provide support for vicarious calibration, data processing and validation of image analysis. 

Validation campaigns usually present an opportunity to collect water optical measurements 

concurrently with water quality and ancillary data to support satellite validation activities. In 

some cases project activities provide a database or data warehouse of field campaign results 

(e.g., SEABASS, LIMNADES, MERMAID and GLEON). 

Whatever the approach a Cal/Val plan in support of the multi or hyperspectral mission in inland and 

coastal waters and over coral reefs should provide field observations which are accurate and 

statistically representative of the variability of these targets (from high absorbing to high scattering, 

from sea level to alpine mountains, from small ponds to large lakes, from optically shallow mid 

ocean coral reefs to optically deep) as well as on data processing issues (e.g. water targets suffer 

from the presence of the adjacent land surface and new approaches to correct for this type of 

contamination are still under development and require validation (Kiselev et al., 2015)). 

4.8 Conclusion and recommendation 
Enabling activities are in summary: atmospheric correction methods; corrections at the air-water 

interface; estimating aquatic ecosystem variables from water leaving radiance or reflectance using 

in-water algorithms for optically deep and optically shallow waters; identifying and quantifying 

sources of uncertainties in the obtained quantities; obtaining in-situ measurements for algorithm 

development, calibration and validation designed to make optimal use of the proposed sensor(s). 

The enabling activities summarised in this chapter are an essential part of making all the investments 

in earth observing sensors worthwhile as the aim is to provide scientific, environmental and resource 

information for aquatic ecosystems of relevance to society. It is essential that a balance of funding is 

assured for all stages of an aquatic ecosystem dedicated mission. In the past, too often, funds 

reserved for the enabling activities were used to counter cost overruns in the Earth observing sensor 

and platform production testing, launch and commissioning. We recommend that in the case of an 
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approved and funded aquatic ecosystem mission funds are reserved for the enabling activities that 
are quarantined from the sensors production testing, launch and commissioning. There are many 
examples where the enabling activities could not be funded after launch after which it took years to 
adequately characterise the TOA data and the BOA data and the applied algorithms before the earth 
observed data were of sufficient quality to be relevant for assessing the state and condition of the 
aquatic ecosystem and enabling assessment of trends. 
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5 Summary of recommendations 
ARNOLD G. DEKKER  

In summary we identified that the following requirements should determine a comprehensive 
aquatic ecosystem Earth observing capability:  

i) ability to estimate algal pigment concentrations of chlorophyll-a, accessory pigments, 
cyanobacteria pigments (cyanophycoerythrin and cyanophycocyanin especially) as well 
as other wavelengths relevant for phytoplankton functional types research,  

ii) algal fluorescence (especially chlorophyll-a fluorescence at 684 nm),  
iii) ability to measure suspended matter, possibly split up into organic and mineral matter,  
iv) ability to measure coloured dissolved organic matter and discriminate terrestrial from 

marine CDOM,  
v) spectral light absorption and backscattering of the optically active components,  
vi) measures of transparency of water such as Secchi disk transparency, vertical attenuation 

of light and turbidity.  

For optically shallow waters also:  

vii) estimates of the water column depth (bathymetry) and  
viii) estimates of substratum type and cover (e.g. muds, sands, coral rubble, seagrasses, 

macro-algae, corals, etc.) as well as plants floating at or just above the water surface. 
 
For residual sun glint correction (if sun glint mitigation measures  are insufficient) and for estimating 
the atmospheric composition it is also required to have spectral bands to measure O3, NO2, water 
vapour and aerosols as well as have access to  selected bands in the nearby infrared and/or SWIR for 
sun glint correction. 

The results indicate that a dedicated sensor of (non-oceanic) aquatic ecosystems could be a 
multispectral sensor with ~26 bands in the 380-780 nm wavelength range for retrieving the aquatic 
ecosystem variables as well as another 15 spectral bands between 360-380 nm and 780-1400 nm for 
removing atmospheric and air-water interface effects. These requirements are very close to defining 
an imaging spectrometer with spectral bands between 360 and 1000 nm (suitable for Si based 
detectors), possibly augmented by a SWIR imaging spectrometer. In that case the spectral bands 
would ideally have 5 nm spacing and FWHM, although it may be necessary to go to 8 nm wide 
spectral bands (between 380 to 780nm where the fine spectral features occur -mainly due to 
photosynthetic or accessory pigments) to obtain enough signal to noise. The spatial resolution of 
such a global mapping mission would be between ~17 and ~33 m enabling imaging of the vast 
majority of water bodies (lakes, reservoirs, lagoons, estuaries etc.) larger than 0.2 ha and ~25% of 
river reaches globally (at ~17 m resolution ) whilst maintaining sufficient radiometric resolution.  

A cost-effective alternative solution of obtaining improved data over aquatic ecosystems could be to 
augment near future planned Earth observing sensors to make them significantly more useful for 
aquatic ecosystem Earth observation. Two spectral bands (one between ~615-625 nm and one 
between ~670-680 nm) would greatly enhance the capability of these terrestrial focused sensors to 
determine two important aspects of water quality in inland and coastal waters, respectively: 
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cyanobacterial (or blue-green algal) concentration and overall abundance of algae via the main 
photosynthesis pigment of chlorophyll-a. 

As spectral and spatial resolution are the core sensor priorities the radiometric resolution and range 
and temporal resolution need to be as high as is technologically and financially possible. A high 
temporal resolution could be obtained by a constellation of Earth observing sensors e.g. in various 
low earth orbits augmented by high spatial resolution geostationary sensors. 
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Acronyms and abbreviations 

AI   Artificial Intelligence 

ANN    Artificial neural network 

AERONET-OC   AERONET - Ocean Colour 

AOT    Aerosol optical thickness 

AOP   Apparent optical property 

BRDF   Bi-directional reflectance distribution function 

BOA   Bottom of atmosphere 

BOR    Bottom of Rayleigh 

CDOM   Coloured dissolved organic matter  

CEOS    Committee on Earth Observation Satellites  

IVOS    The infrared and visible optical sensors subgroup 

INFORM Improved monitoring and forecasting of ecological status of European 
INland waters by combining Future earth ObseRvation data and Models 

CHL   Chlorophyll  

CPC   Cyano-phycocyanin  

CPE   Cyano-phycoerythrin  

CMOS   Complementary metal oxide semiconductor 

COCI    Coastal Ocean Color Imager  

CSIRO    Commonwealth Scientific and Industrial Research Organisation 

CZCS    Coastal Zone Color Scanner 

DLR   German Aerospace Center 

DN   Digital number 

EO    Earth observation 

EnMAP   Environmental Mapping and Analysis Program 

ET   Evapotranspiration 

FLH   Fluorescence line height 

FRM    Fiducial reference measurements 

FOV    Field of view 
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FWHM    Full width half maximum 

GEO   Group on Earth Observations  

GEO   Geostationary orbit sensors 

GEOSS    Group on Earth Observations System of Systems 

GISAT-1   Geo Imaging Satellite-1 

GLaSS   Global Lakes Sentinel Services 

GLS   Global Landsat Survey 

GLWD   Global Lakes and Wetlands Database 

GOCI   Geostationary Ocean Colour Imager (Korea) 

GOME    Global Ozone Monitoring Experiment 

GOES-R   Geostationary Operational Environmental Satellite 

GCP    Ground control point 

GSD   Ground spatial distance 

HAB   Harmful algal bloom 

HEO    Highly elliptical orbit 

HICO   Hyperspectral Imager for the Coastal Ocean 

HPLC   High performance liquid chromatography 

HyspIRI   Hyperspectral InfraRed Imager 

IC    Influence coefficients 

IOCCG   International Ocean-Colour Coordinating Group 

IOP   Inherent optical properties 

ISS   International Space Station 

LEO    Low Earth Orbit 

LIDAR    Light Detection and Ranging 

MAA   Mycosporin-like amino acids 

MODIS   Moderate Resolution Imaging Spectroradiometer (NASA) 

MERIS   Medium Resolution Imaging Spectrometer (ESA) 

MTF   Modulation transfer function 

NAP   Non-algal pigmented particulate matter  

NE∆L    Noise equivalent radiance differences 
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NIR   Near infrared 

NTU    Nephelometric turbidity units 

OBIA   Object-based image analysis 

OCTS   Ocean Color and Temperature Scanner (Japan) 

OCM-2   Ocean Colour Monitor 

ODW   Optical Deep Waters  

OLCI   Ocean and Land Colour Imager (ESA) 

OLI   Operational Land Imager 

OMI    Ozone Monitoring Instrument 

OOB    Out-of-band 

OSOAA   Ordres successifs océan-atmosphère - avancé 

OSW    Optical shallow waters  

PACE    Plankton Aerosol Cloud Ocean Ecosystem 

PFT   Phytoplankton functional type 

PRISMA   Prototype Research Instruments and Space Mission    
   Technology Advancement 

RadCalNet   Radiometric Calibration Network of Automated Instruments 

RS   Remote sensing 

RTF    Radiative transfer 

RTE   Radiative transfer equation 

SAR   Synthetic aperture radar 

SCIAMACHY    Scanning Imaging Absorption Spectrometer for Atmospheric   
   Chartography 

SD   Secchi disc depth  

SDG   Sustainable development goal 

SEABASS  SeaWiFS Bio-optical Archive and Storage System 

SeaWIFS  Sea-viewing Wide Field-of-view Sensor (NASA) 

SGLI   Second Generation Global Imager 

SI   International System of Units  

SIOP   Specific inherent optical properties 

SNR   Signal to noise ratio 
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SPOT   Satellite pour l'Observation de la Terre 

TSM   Total suspended matter  

TSS   Total suspended solids 

TOA    Top of atmosphere 

TOMS    Total Ozone Mapping Spectrometer 

UN   United Nation 

UV   Ultraviolet 

VIS   Visible  

VIIRS   Visible Infrared Imager Radiometer Suite  

WASI   Water Colour Simulator 

WV2   Worldview-2 

WV3   Worldview-3 
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This matrix summarizes our applications and scientific requirements findings for the entire range of 
(non-ocean) aquatic ecosystems. It is based on the expertise of the writing team, the results of the 
simulations and the literature review results in the main report. The level of scientific and aquatic 
ecosystem management end user requirements varies across each application area, preventing 
specific requirements for each habitat to be established.  Therefore this SATM is indicative of what 
needs to be considered – it is recommended to be improved in future as relevant research gets 
published. 
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        spatial resolution of 5 m =~ 25 
m2 

 

   What management or 
science relevant 
information is needed 
for this aquatic 
ecosystem component 
(integrating 
information from 
multiple sources such 
as Earth Observation 
and…..) 

directly 
measureable 
from Earth 
observation: 
management 
relevant 
aquatic 
ecosystem 
variables (by 
applying a 
form of 
inversion 
algorithm) 

What variable 
needs to be 
measured 
from Earth 
observation 
for 
quantitative 
assessment of 
these 
variables  

What variable needs 
to be measured in 
situ  for quantitative 
assessment or 
validation of these 
variables  

Temporal 
resolution: 
Scientific 

Temporal 
resolution: 
Manageme
nt relevant 

Spatial 
resolution 
Scientific  

Spatial 
resolution: 

Management 
relevant 

1 Habitats-
optically 
deep 

 

              

1.1 Inland 
waters 

phytoplankton primary 
production, presence 
and physiological state, 
eutrophication, PFTs, 
pHABs, short term 
bloom phenology, 
underwater light 
climate, 
transparency,(river) 
plumes of high 
concentration flowing 
into lower 
concentration waters;  

 
Concentration
s of 
chlorophyll-a, 
CPC, CPE,  
light 
attenuation 
(Kd) ,  
euphotic 
depth, Secchi 
Disk 
transparency, 
turbidity, 
TSM, NAP, 
CDOM, 
temperature 

Spectral Rrs, 
concentration
s of 
chlorophyll-a, 
CPC, CPE, Kd, 
euphotic 
depth, Secchi 
Disk 
transparency, 
turbidity, 
TSM, NAP, 
CDOM, IOPs, 
SIOPs, 
temperature 

Chl, CPC, CPE using 
Fluorescence or 
spectrophotometric 
or HPLC techniques; 
Rrs, Kd, Secchi Disk 
transparency, 
turbidity, NAP, SPIM + 
SPOM, CDOM, IOPs, 
SIOPs. 

Hourly 
(TSM and 
pHAB's) to 
daily to 
weekly to 
monthly 

Bi-monthly 
(EU Water 
Framework 
Directive - 
water 
quality), 
Daily (EU 
Bathing 
Directive - 
HABs),[EU 
UrbanWast
eWater 
Treatment 
Directive] 

5-10 m; 
100 m for 
the whole 
lake 
surface 

pelagic, 
emissaries/tribut
aries, up to 300 
m from the 
coastline 10 m 
resolution -  to 50 
m  

1.2 Estuarine, 
lagoon, 
delta and 
coastal 
waters 

Same as inland waters 
PLUS: TSM plumes due 
to dredging activities, 
wind-induced TSM 
resuspension from the 
seafloor, 
salinity/saltwater 
intrusions;  

same as 
inland waters  
PLUS:  
Oceanic vs 
freshwater 
CDOM 

 Same as 
inland waters 
PLUS: CDOM 
(as proxy for 
salt 
water/fresh 
water 
dynamics-
plume extent 
etc.) 

  Hourly to 
weekly; 
tidal waters 
quarter- to 
half-hourly: 
(to be 
achieved 
through 
constellatio
n or 
combinatio
n of 
different 
sensors) 

Bi-Monthly 
EU-WFD, 
MSFD (EU-
Marine 
Strategy 
Framework 
Directive), 
MPS (EU 
Maritime 
Spatial 
Planning), 
BWD (EU-
Bathing 
Water 
Directive); 
daily-weekly 

20-100 m; 
Coastal: 
1000; 
Harbours/
estuarine: 
high 
spatial 
variability; 
lagoons 
and 
deltas: 
10-30 m 

 lagoons and 
deltas: 10-20m ; 
up to 25m-50m 
for harbours and 
near shore 
applications; 
Coastal : 100 -
300m 

Table A1.1 Habitat- optically deep 1a – temporal and spatial requirement 
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  Measurement Requirement 

B=Baseline; T = Threshold 

Platform /Ancillary 

requirements 

   Levels/ranges 

 

Spatial Spectral Radiometr

ic 

Geometric requirements 

and geolocational 

accuracy 

Sunglint avoidance 

Polarisation sensitivity 

1 Habitats-

optically deep 

 

     

1.1 Inland waters CHL: 0.1-500; TSM: 0.1-

1000; CDOM 0.01-20; 

T=Spatial resolution 30 

m (nominal, nadir)   B= 

10m 

Spectral range from 400 nm to 1100 

nm  

Spectral cal accuracy ±3 nm 

Spectral sampling 5 nm (FWHM 5nm) 

NedL=0.1; 

NedR=0.0

001 

Sunglint avoidance, 

geolocation 10 m 

1.2 Estuarine, 

lagoon, delta 

and coastal 

waters 

Same as inland waters T= Spatial resolution 

100 m B= Spatial 

resolution 25 m 

Spectral range from 400 nm to 1100 

nm  

Spectral cal accuracy ±3 nm 

Spectral sampling <10 nm (FWHM 

<10nm)  

TSM/Turbidity : 600-850 nm (T 

requirement) ; Extremely turbid 

waters: up to 1080 nm (B -

Requirement); coarse spectral 

sampling sufficient (~40 nm) 

NedL; 

NedR 

Sunglint avoidance, 

geolocation 10 m 

Table A1.2 Habitat-optically deep 1b – measurement and platform requirement 
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        spatial resolution of 5 m 
=~ 25 m2 

 

   What 
management or 
science relevant 
information is 
needed for this 
aquatic 
ecosystem 
component 
(integrating 
information 
from multiple 
sources such as 
Earth 
Observation 
and…..) 

directly 
measureable 
from Earth 
observation: 
management 
relevant 
aquatic 
ecosystem 
variables (by 
applying a form 
of inversion 
algorithm) 

What variable 
needs to be 
measured from 
Earth 
observation for 
quantitative 
assessment of 
these variables  

What variable needs to 
be measured in situ  for 
quantitative 
assessment or 
validation of these 
variables  

Temporal 
resolution: 
Scientific 

Temporal 
resolution: 
Managem
ent 
relevant 

Spatial 
resolution 
Scientific  

Spatial 
resolution: 
Manageme
nt relevant 

2 Habitats-

optically 

shallow 

 

              

2.1 Inland 

water & 

submerged 

macrophyte

s 

primary 

productivity, 

eutrophication, 

biodiversity 

Species, extent, 

density,  

condition, 

nascence, 

scenescence 

Spectral Rrs, 

species 

reflectance+ 

depth in water 

column + 

background 

substratum 

reflectance 

Spectral libraries of 

macrophytes 

Monthly to 

Seasonal 

Monthly 

to 

Seasonal 

5 to 10 m 10 m (from 

coastline 

down to 

the 

maximum 

depth of 

growth) 

2.2 Seagrasses, 

macro-

algae  & 

coral reefs 

energy 

environment, 

eutrophication, 

temperature 

effects; seagrass-

specific: 

epibionts; corals-

specific: disease, 

bleaching and  

COTS damage & 

recovery;  

Type or species, 

extent, density, 

biodiversity, 

condition, 

nascence, 

scenescence 

and coral 

bleaching 

Spectral Rrs, 

species 

reflectance + 

depth in water 

column + 

background 

substratum 

reflectance 

Spectral libraries of 

seagrasses, macro-algae  

& corals, rocky reefs, 

encrusting algae, 

seagrass and macro-

algae wrack, coral 

rubble, algal 

overgrowth, epibionts, 

sands, silts, muds  

Weekly to 

Monthly 

(except for 

bleaching 

and COTS 

events then 

weekly) 

Weekly to 

Monthly 

(except for 

bleaching 

and COTS 

events 

then 

weekly) 

5 to 10 m 10 m (from 

coastline 

down to 

the 

maximum 

depth of 

growth) 

2.3 Shallow 

water 

bathymetry 

sedimentation, 

erosion 

Shallow water 

bathymetry for 

hydrographic, 

extreme events 

and 

environmental 

applications 

all variables for 

optically deep 

aquatic habitats 

PLUS Spectral 

Rrs, species 

reflectance 

PLUS Depth to 

substratum 

Spectral libraries of 

macrophytes, 

seagrasses, macro-algae  

& corals, rocky reefs, 

encrusting algae, 

seagrass and macro-

algae wrack, coral 

rubble, algal 

overgrowth, epibionts, 

sands, silts, muds  

Monthly to 

yearly 

yearly or 

after 

extreme 

event (e.g. 

tsunami) 

5 m 5 m 

Table A1.3 Habitats-optically shallow 2a – temporal and spatial requirement 
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  Measurement Requirement 
B=Baseline; T = Threshold 

Platform /Ancillary 
requirements 

   Levels/ranges 

 

Spatial Spectral Radiometric Geometric 
requirements and 
geolocational accuracy 
Sunglint avoidance 
Polarisation sensitivity 

2 Habitats-

optically 

shallow 

 

     

2.1 Inland water 

& submerged 

macrophytes 

 T= spatial resolution 30 

m; B= spatial resolution 

10 m 

Spectral range from 400 nm  to 1100 

nm  

Spectral cal accuracy ± 5 Nm 

Spectral sampling 8 nm (FWHM 8nm) 

NedL=0.1; 

NedR=0.000

1 

Sunglint avoidance, 

geolocation 5 m 

2.2 Seagrasses, 

macro-algae  

& coral reefs 

 T= spatial resolution 30 

m; B= spatial resolution 

10 m 

Spectral range from 400 nm  to 1100  

nm  

Spectral cal accuracy ± 5 Nm 

Spectral sampling 8nm nm (FWHM 8 

nm) 

NedL=0.1; 

NedR=0.000

1 

Sunglint avoidance, 

geolocation 5 m 

2.3 Shallow water 

bathymetry 
 T= spatial resolution 10 

m; B= spatial resolution 

5 m 

Spectral range from … nm  to ….. nm  

Spectral cal accuracy ± ….. Nm 

Spectral sampling ….. nm (FWHM 

…nm) 

NedL=0.3; 

NedR=0.001 

  

       

Table A1.4 Habitats – optically shallow 2b - measurement and platform requirement 
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Table A1.5 Habitat – emersed  3a - temporal and spatial requirement 

        spatial resolution 

of 5 m =~ 25 m2 

 

   What management or 

science relevant 

information is needed for 

this aquatic ecosystem 

component (integrating 

information from 

multiple sources such as 

Earth Observation 

and…..) 

directly 

measureable 

from Earth 

observation: 

management 

relevant aquatic 

ecosystem 

variables (by 

applying a form 

of inversion 

algorithm) 

What variable 

needs to be 

measured 
from Earth 

observation 

for 

quantitative 

assessment of 

these 

variables  

What variable needs to 

be measured in situ  for 

quantitative assessment 

or validation of these 

variables  

Temporal 

resolution: 

Scientific 

Temporal 

resolution

: 

Managem

ent 

relevant 

Spatial 

resolut

ion 

Scientif

ic  

Spatial 

resolut

ion: 

Manag

ement 

relevan

t 

3 Habitats-
emersed 

 

              

3.1 Macrophyt
es 

Extent and distribution, 
productivity,  biodiversity, 
condition, invasive 
species, material flux, 
dieback 

Type or species, 
extent, density, 
inflorescence, 
nascence, 
scenescence, 
Vegetation 
Indices (VI), PRI 
or 
photosynthetic 
pigment 
fluorescence, 
CDOM 
fluorescence 

Spectral Rrs, 
Kd, IOPs (for 
depth of 
macrophyte 
calculations) 

Spectral libraries of 
macrophytes;  water 
depth, tidal range, 
salinity, water 
temperature, pH, 
nutrients, DOx, CDOM, 
TSM, drainage 
conditions, canopy 
height, LAI, LAD, above 
and below ground 
biomass, plant stress, 
photosynthetic efficiency 
and yield, CO2/O2 flux, 
microtopology, 
biodiversity 

Tidal fluxes: 
hours 
Phenology:  
2-3 Days - 
Monthly 
Secular 
trends and 
peak 
growth: 
Weekly to 
seasonal 

Secular 
trends 
and peak 
growth: 
Weekly to 
monthly 

1 to 30 
m 

1 to 30 
m 

3.2 Macro-
algae (e.g. 
kelp) 

Extent and distribution, 
productivity,  biodiversity, 
condition,invasive 
species, material flux, 
dieback, eutrophication,  
temperature 

Type or species, 
extent, density, 
biodiversity,  
condition, 
nascence, 
scenescence 

Spectral Rrs, 
Kd, IOPs (for 
depth of 
macrophyte 
calculations) 

 Spectral library of 
macro-algae  

Weekly to 
monthly 

      

3.3 Floating 
layers 
(algal 
scum, coral 
spawning, 
oil etc) 

eutrophication, coral 
spawning timing, range 
and extent oil pollution or 
natural oil slicks 

pHAB floating 
layer, sargassum 
and ulva, sea 
grass wracks,  oil 
layers 

Spectral Rrs  Spectral library of algal 
scum, coral spawn, oil 
types and thicknesses 

Hourly to 
daily 

Weekly 5 m 5 m 

3.4 Intertidal 
exposed 
areas 

Extent and distribution, 
productivity,  biodiversity, 
condition, invasive 
species, material flux, 
dieback, energy 
environment, 
sedimentation, erosion, 
eutrophication, 
temperature effects 

Species, extent, 
density, 
biodiversity, 
condition, 
nascence, 
scenescence 

Spectral Rrs  Spectral library of 
intertidal seagrasses, 
macro-algae, benthic 
micro-algae, muds, silts, 
sands 

Weekly to 
monthly 
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  Measurement Requirement 
B=Baseline; T = Threshold 

Platform /Ancillary 
requirements 

   Levels/ranges 

 

Spatial Spectral Radiometr
ic 

Geometric requirements 
and geolocational 
accuracy 
Sunglint avoidance 
Polarisation sensitivity 

3 Habitats-

emersed 

 

     

3.1 Macrophytes B: 5 days 

T: 15 days 

Spatial resolution 

B: 10 m (nominal, 

nadir) 

T: 30 m (nominal, nadir) 

B: Spectral range  from 400 nm  to 

1000 nm  

Spectral cal accuracy ± 5 Nm 

Spectral sampling 5 nm (FWHM 10 

nm) 

T: Spectral range  from 400 nm  to 

1000 nm  

Spectral cal accuracy ± 10 Nm 

Spectral sampling 10 nm (FWHM 10 

nm) 

NedL=0.3; 

NedR=0.0

01 

Glint avoidance, Hot spot 

avoidance, geolocation 5 

m 

3.2 Macro-algae 

(e.g. kelp) 

  Spatial resolution …. m 

(nominal, nadir) 

Spectral range  from … nm  to ….. nm  

Spectral cal accuracy ± ….. Nm 

Spectral sampling ….. nm (FWHM 

…nm) 

NedL; 

NedR 

Hot spot avoidance, 

geolocation 5 m 

3.3 Floating layers 

(algal scum, 

coral 

spawning, oil 

etc) 

from 1  to 7 days Spatial resolution 10 m 

(nominal, nadir) 

Spectral range  from 400 nm  to 2500 

nm  

Spectral cal accuracy ± 5 Nm 

Spectral sampling 10 nm (FWHM 10 

nm) 

NedL=0.6; 

NedR=0.0

1 

Geolocation 10 m 

3.4 Intertidal 

exposed areas 

  Spatial resolution …. m 

(nominal, nadir) 

Spectral coverage VIS-NIR ….. nm; 

SWIR … and ….nm 

Spectral cal accuracy ± ….. Nm 

Spectral sampling ….. nm (FWHM 

…nm) 

NedL; 

NedR 
  

Table A1.6 Habitats – emersed 3b – measurement and platform requirement 
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Table A1.7 Atmospheric correction - temporal and spatial resolution requirement 

 

 

 

       spatial resolution of 5 m 
=~ 25 m2 

   What 
management or 
science relevant 
information is 
needed for this 
aquatic 
ecosystem 
component 
(integrating 
information from 
multiple sources 
such as Earth 
Observation 
and…..) 

directly 
measureable 
from Earth 
observation: 
management 
relevant aquatic 
ecosystem 
variables (by 
applying a form 
of inversion 
algorithm) 

What variable 
needs to be 
measured from 
Earth 
observation for 
quantitative 
assessment of 
these variables  

What variable needs to 
be measured in situ  for 
quantitative 
assessment or 
validation of these 
variables  

Temporal 
resolution
: Scientific 

Temporal 
resolution
: 
Managem
ent 
relevant 

Spatial 
resolution 
Scientific  

Spatial 
resolution: 
Manageme
nt relevant 

4 Atmospher
ic 
correction  

    Directly 
measureable 
from Earth 
observation 

Required from other 
sources 

        

4.1 Atmospher
e above 
coral reef, 
coastal  
and inland 
environme
nts (incl 
rural and 
urban) and 
adjacency 
effect 
correction; 

NA  H2O, O3, 
NO2,CO, CH4, 
CO2-vertical 
column content; 
aerosol optical 
(thickness@550n
m and  aerosol 
type) or (optical 
thickness 
spectrum and 
aerosol single 
scattering 
albedo); vertical 
distribution of  
aerosols;  Cloud 
cover and cloud 
detection (cloud 
mask); 
polarisation, 
atm pressure 

TOA solar irradiation;  
in-situ to support 
validation: aerosol 
optical thickness 
spectrum, aerosol type; 
anthropogenic organic 
and inorganic 
compounds with 
relevant optical 
signatures; atm. 
Pressure; H2O, O3, 
NO2,CO, CH4, CO2-
vertical column content 

Each 
image 

NA each lake NA 

4.2 Sun and 
sky glint 

NA sun and skyglint 
characterisation 
(like slope 
distribution of 
wave normals 
over ocean), 
reflectance of 
foam and area 
covered by 
whitecaps, wind 
speed and 
direction 

specular 
reflectance (i.e., 
sky and sun glint 
characterisation)
, wind speed 

specular reflectance 
(i.e., sky and sun glint); 
in-situ to support atm. 
correction : wind speed; 
from models: 
reflectance of foam and 
area covered by 
whitecaps 

Each 
image 

NA Each lake NA 
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  Measurement Requirement 

B=Baseline; T = Threshold 

Platform /Ancillary 

requirements 

   Levels/ranges 

 

Spatial Spectral Radiometric Geometric 

requirements and 

geolocational accuracy 

Sunglint avoidance 

Polarisation sensitivity 

4 Atmospheric 

correction  

  Spatial resolution …. m 

(nominal, nadir): e.g. 

spatial resolution of 5m 

=~ 25m2 

Spectral range from … nm  to ….. nm  

Spectral cal accuracy ± ….. Nm 

Spectral sampling ….. nm (FWHM 

…nm) 

NedL; NedR   

4.1 Atmosphere 

above coral 

reef, coastal  

and inland 

environments 

(incl rural and 

urban) and 

adjacency effect 

correction; 

Each image low spatial resolution 

sufficient : 300 - 1km 

(nominal, nadir) 

B: At least the spectral range as for 

the observations of water properties, 

optimal spectral range from 360 nm to 

2400 nm 

T: 

• One or two bands in UV, around 360 
and 368 nm for absorbing aerosols 

• Spectral range: 400-950 nm; 

Spectral resolution (FWHM) : 6-10nm; 

Spectral calibration accuracy: +/-0.3 

nm  

• SWIR bands at least at  1.6 and 2.2 
μm for aerosol retrieval 
• Cirrus band 1.38µm 

 

• Oxygen B and A band spectra: 
Spectral range: (B) 675 nm-710 nm 

and (A) 757 nm - 780 nm, bandwidth 

<0.3 nm; spectral cal accuracy 0.1 nm;   

T:  

 

•  Polarisation........ 

NedL: 0.1 -

0.5 mW/(m² 

sr nm) 

two or better multi-

directional observation 

for improved aerosol 

retrieval; polarized 

observations at one 

wavelength in the VIS 

would be nice to have 

for estimation of 

aerosol characteristics 

4.2 Sun and sky 

glint 

Each image Same as each image Spectral Range 730 to 1000 nm 

(temporally and spatially coregistered 

with VIS bands)- no preference for 

band width. Just need one spectral 

band to use solely for sunglint 

correction 

NedL; NedR 

(needs to 

avoid 

saturation if 

possible -

else sunglint 

correction 

impossible) 

tilted (off nadir) 

observation for 

sunglint avoidance 

Table A1.8 Atmospheric correction -measurement and platform requirement 

 

 

 

 



145 
 

Appendix A.2  Sensitivity analysis 
PETER GEGE , SINDY STERCKX, ARNOLD G.DEKKER 

Goal of this study is to derive sensor requirements for measuring the spectral and radiometric 
properties of different water and benthic cover types that are relevant for extracting information 
from optically deep and shallow inland, coastal and coral reef waters. For this purpose forward 
simulations of hyperspectral measurements are made. Using an analytical model, a large number of 
reflectance spectra are calculated for bottom of atmosphere (BOA) to study the expected spectral 
and radiometric variability. These simulated measurements are first analyzed for the information 
bearing wavelengths and reflectance signals to derive sensor requirements concerning spectral range 
and spectral resolution. In a second step a representative subset is converted to top of atmosphere 
(TOA) radiances in order to determine the required radiometric sensitivity. 

The retrieval of parameters from measurements is addressed in the main report.  

A2.1. Scenarios 

The (non-oceanic) aquatic ecosystem waters on Earth are as variable and wide ranging as their 
surrounding ecosystems and catchment areas: water constituents and bottom substrates differ 
considerably in type, concentration and optical properties. This makes the reflectance spectra more 
variable than for the open ocean and many optically deep coastal waters. To define reasonable 
requirements for a sensor, the spectral variety is described by scenarios covering a relevant part of 
these aquatic ecosystems.  

A2.1.1 Deep water 
As the concentrations of water constituents are not completely independent from each other, the 
choice of scenarios is oriented on certain types of lakes. Scenarios for typical lakes are defined in 
Table 1. 

These scenarios are also representative of coastal waters. Each scenario represents a typical 
concentration and a representative range of total suspended matter (TSM), colored dissolved organic 
matter (CDOM) or chlorophyll-a (CHL). The concentrations of TSM and CHL are expressed in terms of 
mass per water volume, [g m-3] and [mg m-3], while CDOM is specified by its absorption coefficient at 
440 nm (aCDOM) in units of m-1 and its spectral slope (SCDOM) in units of nm-1. The concentrations and 
ranges for scenarios X+ (low TSM), Y- (low aCDOM), Y+ (High aCDOM) and C- (low CHL) are based on Table 
1 in Peters et al., (2015), while scenario C+ (high CHL) is based on the two Finnish lakes Tuusulanjärvi 
and Hiidenvesi (Ylöstalo et al., 2014).  
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Table 1: Standard scenarios for optically deep water. A scenario is defined by the value of a parameter 
marked as bold. The other parameters are specified by a typical value and a range in the notation typical 
(min-max). 

Scenario X- X+ Y- Y+ C- C+ 

Represents  low TSM high TSM low aCDOM high aCDOM low CHL high CHL 

Example L. Constance Lake Peipsi L. Maggiore Lake Peipsi Lake Garda 2 Finnish l. 

TSM [g m-3] 1 5 1(0.2-10.0) 5(1-10) 1(0.2-20.0) 10(5-15) 

aCDOM [m-1] 0.5(0.2-2.0) 2.5(1-5) 0.2 2.5 0.1(0.04-
2.00) 

2.5(1.5-
4.5) 

CHL[mg m-3] 2(0.5-15.0) 5(1-20) 1(0.2-5.0) 5(1-20) 1 40 

SCDOM[nm-1] 0.014 

(0.01-0.02) 

0.014 

(0.01-0.02) 

0.014 

(0.01-0.02) 

0.014 

(0.01-0.02) 

0.014 

(0.01-0.02) 

0.014 

(0.01-0.02) 

 

Of particular relevance for defining sensor requirements are the extreme cases of the measurements 
of interest; if a sensor is suitable for the extremes, it should provide even better data in the 
intermediate ranges. This concept of extremes defines the scenarios of Table 2. The choice of 
extreme values is based on Table 1 in Peters et al., (2015), as it covers a large range of conditions. 
The extreme concentrations of TSM, CDOM and CHL are chosen close to a minimum or maximum of 

Table 1 in Peters et al., (2015).  

 

Table 2: Extreme scenarios for optically deep water. The notation is the same as in Table 1. 

Scenario X-- X++ Y-- Y++ C-- C++ 

Extreme for  low TSM high TSM low aCDOM high aCDOM low CHL high CHL 

Example Lake Garda Lake Taihu Lake Garda Finnish lakes Italian 
lakes 

Lake Taihu 

TSM [g m-3] 0.1 300 1(0.2-20.0) 2(0.5-5.0) 1(0.2-20.0) 50(10-300) 

aCDOM [m-1] 0.1(0.04-
2.00) 

1(0.2-3.0) 0.04 10 0.1(0.04-
2.00) 

1(0.2-3.0) 

CHL [mg m-3] 1(0.1-10.0) 20(1-1000) 1(0.1-10.0) 5(1-10) 0.2 1000 

SCDOM [nm-1] 0.014 

(0.01-0.02) 

0.014 

(0.01-0.02) 

0.014 

(0.01-0.02) 

0.014 

(0.01-0.02) 

0.014 

(0.01-0.02) 

0.014 

(0.01-0.02) 
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A sensitivity analysis for a scenario consists of three simulation runs. Each run calculates N spectra at 
different values of TSM, aCDOM, CHL, or the slope of CDOM absorption (SCDOM), while the other 
parameters are kept constant. For example, a CDOM run of scenario X-- changes aCDOM in N steps 
from 0.04 to 2.00 m-1 and sets TSM = 0.1 g m-3, CHL = 1 mg m-3 and SCDOM = 0.014 nm-1. N = 50 is 
chosen, hence 150 reflectance spectra are calculated for all three runs of a deep water scenario. 

A2.1.2 Shallow water 
The scenarios of shallow water are defined by the irradiance reflectance spectra of bottom substrate 
and the water column composition. The water is represented by scenario Y- in this study, as its low 
concentrations of TSM, CDOM and CHL represent relatively clear water. The bottom substrate 
spectra were provided by N. Pinnel (#0, #1), E. Botha (#2 to #12) (Botha et al., 2013), and D. Rogge 
(#13). A plot of these spectra is shown in Figure 1. The labeling is as follows: 

0 Chara contraria (macrophyte) 

1 Potamogeton perfoliatus (macrophyte) 

2 Rock 

3 Bleached coral 

4 Dark silt 

5 Bright sand 

6 Yellow porites sp. (coral) 

7 Purple encrusting coralline algae 

8 Brown porites sp. (coral) 

9 Posidonia australia (seagrass) 

10 Detritus (sea-grass wrack) 

11 Ecklonia radiata (kelp) 

12 Coarse coral rubble 

13 Dark sand 
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Figure 1: Bottom substrate spectra used for the simulations. 

A2.2 Model 

The reflectance of water depends on the spectral absorption coefficient, 𝑎𝑎(𝜆𝜆), and spectral 

backscattering coefficient, 𝑏𝑏𝑏𝑏(𝜆𝜆), of the water layer. The most relevant components contributing to 

𝑎𝑎(𝜆𝜆) and 𝑏𝑏𝑏𝑏(𝜆𝜆) are: pure water (index "W"), phytoplankton (index "p"), coloured dissolved organic 

matter (index "CDOM") and non-algal particles (index "NAP"). Their absorption and backscattering 

coefficients are inherent optical properties (IOPs), which are additive: 

𝑎𝑎(𝜆𝜆) = 𝑎𝑎𝑤𝑤(𝜆𝜆) + 𝐶𝐶𝑝𝑝 ∙ 𝑎𝑎𝑝𝑝כ (𝜆𝜆) + 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ∙ 𝑎𝑎𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶כ (𝜆𝜆) + 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 ∙ 𝑎𝑎𝑁𝑁𝑁𝑁𝑁𝑁כ (𝜆𝜆), 
(1) 

 
 

𝑏𝑏𝑏𝑏(𝜆𝜆) = 𝑏𝑏𝑏𝑏,𝑤𝑤(𝜆𝜆) + 𝐶𝐶𝑝𝑝 ∙ 𝑏𝑏𝑏𝑏,𝑝𝑝כ (𝜆𝜆) + 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 ∙ 𝑏𝑏𝑏𝑏,𝑁𝑁𝑁𝑁𝑁𝑁כ (555) ∙ � 𝜆𝜆
555�

−𝑛𝑛
. 

(2) 

 
 

The C's are the concentrations, and the star symbol indicates normalization to concentration (for 

phytoplankton and NAP) or wavelength (for CDOM). The normalized IOPs are called specific inherent 
optical properties (SIOPs).  

All calculations are made with the software WASI (Gege, 2004; Gege and Albert, 2006). These 

simulate measurements of remote sensing reflectance Rrs, which is the ratio of upwelling radiance to 

downwelling irradiance, both above the water surface and excluding specular reflections at the 

surface. The model of Albert (Albert and Mobley 2003, Albert 2004) is used for the simulations, which 

expresses Rrs as a polynomial of fourth order of the quantity 
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𝑢𝑢(𝜆𝜆) = 𝑏𝑏𝑏𝑏(𝜆𝜆)
𝑎𝑎(𝜆𝜆) + 𝑏𝑏𝑏𝑏(𝜆𝜆)

 (3) 

The model can be used for optically deep and shallow waters and accounts for the sun zenith angle 
and the viewing angle. Its coefficients have been derived using Hydrolight simulations covering wide 
ranges of environmental parameters, including most of the high concentrations observed in inland 
waters. A similar model has been developed by Lee et al., (1998, 1999); see Gege (2017) for a 
comparison of the equations and parameter ranges.  

 
The simulations assume, for each band, a Gaussian shaped spectral response with a full width at half 
maximum (FWHM) of 5 nm. The SIOPs are chosen as follows: 

• a୮כ (ɉ): two specific absorption spectra of green algae (from the WASI database) and 
cyanobacteria (S. Peters, personal communication) (Figure 2). 

• aେୈכ (ɉ) is approximated by an exponential equation with slope SCDOM = 0.014 nm-1 
(Figure 2). 

• aכ (ɉ) is approximated by an exponential equation with a slope SNAP = 0.011 nm-1 (D'Sa et 
al. 2006; also average of GLASS data) and a specific absorption coefficient of 0.027 m2 g-1 at 
440 nm (Babin et al., 2003) (Figure 2). 

• bୠ,୮כ (ɉ): two specific backscattering coefficients from Lake Garda; for green algae from 
normal clear water, for cyanobacteria from water with Anabaena (both spectra provided by 
C. Giardino, personal communication) (Figure 3).  

• bb,NAP*(555) = 0.011 m2 g-1 and n = 0.75 (result from GLASS). 
 

 

 

Figure 2: Specific absorption coefficients used for the simulations. 
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Figure 3: Specific backscattering coefficients of phytoplankton used for the simulations. 

A note of caution in interpreting these results is due as our simulations are based on a small selection 

of possible specific inherent optical properties and substratum types. E.g. our phytoplankton SIOPs 

are quite specific to where they were measured and the species present in these natural waters at 

that time of sampling. This has consequences for e.g. the ratio of spectral backscattering of the 

phytoplankton to the pigment absorption of the same phytoplankton. The spectral absorption 

efficiency and the location of accessory pigments will vary significantly with species and their growing 

(and stress) conditions. If we were to have simulated e.g. Microcystis species (cyanobacteria) with 

high refractive indices and gas vacuoles we would get different simulation results than for an algal 

species with lower refractive indices and higher or lower specific absorption values. In a similar 

manner the suspended matter may be composed of mainly mineral matter or mainly detrital organic 

matter of anything in between. In the tropics it is possible that the suspended matter is mainly 

composed of very weathered fine clays scattering light very efficiently. In glacial lakes fine fresh 

glacial clays may be similar in being highly scattering. In lakes in peat areas the suspended sediment 

may be mostly very dark brown and mainly organic. The substratum types (rocks, pebbles, coarse 

sand, fine sand, silts and clays as well as biogenic reefs) may vary as will its cover type (micro-algae, 

macro-algae, algal mats, seagrasses, freshwater plants, coralline algae, encrusting algae, sponges, 

corals etc.). The simulations presented here are not exhaustive-they are indicative. In chapter 2 of 

the main report we also discuss other spectral information that needs to be considered for 

determining the specifications of a generic globally valid (non-oceanic) aquatic ecosystem Earth 

observing system.  
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A2.3 Methods 

A2.3.1 Determination of the most relevant wavelengths 
The following figures illustrate using the example of scenario Y- the simulations that were made to 
determine the spectral sensor requirements. Scenario Y- is defined by a low CDOM concentration of 
aCDOM(440) = 0.2 m-1 and associated conditions of TSM = 1 mg/l, CHL = 1 µg/l, and SCDOM = 0.014 nm-1. 
Analogous spectra, plots and associated tables are generated for all the scenarios.  

Figure 4 illustrates the changes induced to Rrs(λ) by altering TSM from 0.2 to 10 mg/l (panel A), CHL 
from 0.2 to 5 µg/l (panel B) and SCDOM from 0.010 to 0.020 nm-1 (panel C). A shallow water simulation 
shows Panel D. It illustrates the changes of the reflectance spectrum when the bottom substrate 
"Posidonia australia" is submerged in water of different depth ranging from 1 mm to 50 cm. In each 
case, the altered parameter was changed in 50 equidistant steps, while all other parameters were 
kept constant. 

The largest changes in the amplitudes of Rrs(λ) are obviously introduced by changes of TSM (panel A) 
and water depth (panel D), but the spectral changes are difficult to recognize in this kind of 
representation. The spectral changes are more easily visualized after normalization. The spectra 
Rrs(λ) normalized in the range from 400 to 800 nm are shown in Figure 5. 

Figure 4: Remote sensing reflectance for (A) TSM range 0.2 – 10.0 mg/l, (B) CHL range 0.2 – 5.0 µg/l, (C) SCDOM 
range 0.010 – 0.020 nm-1, (D) depth range 0.01 – 0.50 m. 

A 

C 

B 

D 



152 
 

For optically deep waters (panels A, B, C), the normalized spectra show little spectral variability , 
which is more pronounced for changes of SCDOM (panel C) and CHL (panel B) than for changes of TSM 
(panel A). The reflectance maximum remains near 540 nm for all studied conditions, but the spectral 
shape undergoes systematic modifications.  

For shallow water, Panel D illustrates the large spectral changes of remote sensing reflectance for 
water layer thicknesses between 1 mm (black) and 50 cm (red). The 1 mm case represents almost no 
water (a water depth of zero cannot be simulated). The difference between any two curves 
corresponds to a water layer difference of 1 cm. The water not only decreases the amplitude of Rrs 
(panel D of Figure 4), but also changes the spectral shape with e.g. a shift of the minima and maxima 
of the Rrs spectra.  

In order to highlight the changes of spectral shape, the first and second derivatives, wRrs/wλ and 
w�Rrs/wλ�, are shown in Figure 6. The most useful information of the derivative spectra are the 
positions of the zeros and their changes, as these indicate the wavelengths and wavelength changes 
of the local minima, maxima and shoulders. These are shown in Figure 7 as histograms summing up 
the zeros of the plots of Figure 6. 

Figure 5: Normalized remote sensing reflectance for (A) TSM range 0.2 – 10.0 mg/l, (B) CHL range 0.2 – 5.0 
µg/l, (C) SCDOM range 0.010 – 0.020 nm-1, (D) depth range 0.01 – 0.50 m. 

A 

C 

B 

D 
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Figure 6: First (left column) and second (right column) derivatives of remote sensing reflectance for 
(A, B) TSM range 0.2 – 10.0 mg/l, (C, D) CHL range 0.2 – 5.0 µg/l, (E, F) SCDOM range 0.010 – 0.020 nm-1, 
(G, H) water depth range 0.01 – 0.50 m. 

A 

C 

B 

D 

E 

G 

F 

H 
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Figure 7: Zeros of first (left column) and second (right column) derivatives of remote sensing 
reflectance for (A, B) TSM range 0.2 – 10.0 mg/l, (C, D) CHL range 0.2 – 5.0 µg/l, (E, F) SCDOM range 
0.010 – 0.020 nm-1, (G, H) water depth range 0.01 – 0.50 m. 

A 

C 

B 

D 

E 

G 

F 

H 
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Histogram values of 50 (= number of simulation runs) represent Rrs extrema that remain at the same 

wavelength. For the chosen example, only the reflectance minimum at 751 nm and the reflectance 

maximum at 806 nm remain stable, while all other peaks and troughs change their wavelength, in 

particular for changes of CHL (panel C). 

In order to make the spectral changes induced by TSM, CHL, SCDOM and water depth comparable, the 

zeros of the first derivatives are shown in Figure 8 for all parameter values used in the simulations. 

Y- 
TSM 
[mg l-1] 

0.2 
 
10   

Y- 
CHL 
[µg l-1] 

0.2 
 
5  

Y- 
SCDOM 
[nm-1] 

0.01 
 
0.02  

Y- 
depth 
[m] 

0.01 
 
10  

    
   400 500 600 700 800 90  
  Wavelength [nm] 
Figure 8: Red lines: Zeros of first derivatives of remote sensing reflectance for TSM range 0.2 – 10.0 mg/l (first 
row), CHL range 0.2 – 5.0 µg/l (second row), SCDOM range 0.010 – 0.020 nm-1 (third row) and water depth 
range 0.01 – 10.0 m (third row). Background: normalized Rrs (green), normalized first derivative of Rrs (blue).  

The background color of Figure 8 codes the amplitude of the normalized reflectance spectrum in 

green and the normalized first derivative in blue in order to give an indication of the relative 

radiometric sensitivity required to resolve the spectral feature of interest. The bright colors from 500 

to 600 nm for deep water represent high reflectance, suggesting that it might be easier to measure 

the reflectance maxima at 507 nm and 541 nm and the minima at 513 nm and 555 nm than the 

reflectance minimum at 751 nm and the maximum at 806 nm. For very shallow water, the bright 

regions and maxima of the reflectance spectra are very different from those of optically deep water, 

but approach these above approximately 9 m depth in this example. 

Figure 9 shows the first derivatives (red) and the second derivatives (green). Such plots are used to 

compare the relevant wavelengths for the different scenarios. 
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Figure 9: Zeros of first derivatives (red) and zeros of second derivatives (green) of remote sensing reflectance 
for scenario Y-. 

A2.3.2 Determination of the optimal spectral resolution 
To capture the information content of a reflectance spectrum, the sensor has to resolve the spectral 
features of the spectrum, in particular the peaks, dips and shoulders. These changes of steepness are 
given by the first derivative wRrs(λ)/wλ� It can be measured by a real sensor only approximately, 
depending on the sensor's radiometric resolution ∆Rrs and spectral resolution ∆λ: 
∆Rrs/∆λ�|�wRrs(λ)/wλ� For given ∆Rrs, the ideal spectral resolution is thus: 

 

ο𝜆𝜆 = οܴ௦
߲ܴ௦/߲𝜆𝜆

 (4) 

 

At wavelength regions of large reflectance changes, the spectrum must be sampled more frequently 
than at regions of small gradients, hence ∆λ�is inversely related to wRrs(λ)/wλ. Eq. (4) defines the 
optimal spectral resolution for a sensor with a noise-equivalent reflectance of ∆Rrs. Higher (or finer) 
spectral resolution increases sensor noise (due to a decreased sensitivity-thus decreasing the signal 
to noise ration SNR), while lower (or coarser) spectral resolution decreases the information content 
of the reflectance measurement and increases the signal to noise ratio (SNR). 

Since the measurement of gradients requires adjacent channels, ∆Rrs is taken from the requirement 
for hyperspectral sensors, i.e. ܰܧοܴ௦,ଵ from eq. (5) is used to calculate ∆λ. Figure 10 and Figure 11 
illustrate the results of ∆λ�calculations for scenario Y-. 

It does need to be realized that these results are for the chosen parameterisation (see tables 1and 2 
as well as figures 1 to 3) and if other parameterisations are run (different algal species, other 
particulate matter, CDOM substratum etc.) some of these results will vary. We caution against 
interpreting these results as being absolute for all non-oceanic aquatic ecosystems. Indeed our 
advice is that in the case of determining a specific sensor for a specific aquatic environment to 
perform more of these simulations with appropriate parameterisations. 
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Figure 11: Spectral resolution required to resolve changes in reflectance (using ࡱࡺο࢙࢘ࡾ,) due to varying 
concentrations for scenario Y- .  

A 

C 

B 

Figure 10: Spectral resolution for (A) TSM range 0.2 – 10.0 mg/l, (B) CHL range 0.2 – 5.0 µg/l, (C) SCDOM range 
0.010 – 0.020 nm-1, (D) depth range 0.01 – 10.0 m. 

 

D 
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A2.3.3 Determination of the required radiometric resolution 
The requirement concerning radiometric resolution is derived using two approaches. 

The first approach is based on the assumption that the dynamics of a spectrum Rrs(λ) should be 
sampled at a typical resolution of 1%. Hence, the noise-equivalent remote sensing reflectance 
difference, ܰܧοܴ௦, is calculated as 1% of the difference between the reflectance maximum, 
ܴ௦,௫, and the reflectance minimum ܴ௦,𝑛𝑛: 

οܴ௦,ଵܧܰ = 0.01 หܴ௦,௫ െ ܴ௦,𝑛𝑛ห. (5) 

The subscript "1" refers to approach number 1. The wavelength interval from 400 to 800 nm is taken 
to determine ܴ௦,𝑛𝑛 and ܴ௦,௫. 

The second approach is oriented on the assumption that a measurement should be sensitive to 
parameter changes in the order of 10%. It determines first the wavelength λmax which is most 
sensitive to changes of Rrs(λ) induced by parameter x. The reflectance change at λmax induced by a 
10% change of x is then taken to define the noise-equivalent remote sensing difference:  

οܴ௦,ଶܧܰ = |ܴ௦(𝜆𝜆௫, (ݔ1.1 െ ܴ௦(𝜆𝜆௫,ݔ)|. (6) 

The subscript "2" refers to approach number 2. Figure 12 illustrates the spectra ܴ௦(𝜆𝜆, (ݔ1.1 െ
ܴ௦(𝜆𝜆,  .for scenario Y- and x representing TSM, aCDOM, CHL, and water depth (ݔ

Both approaches are applied to all spectra simulated for all scenarios. The recommendation for 
 οܴ௦ is derived from a comparison of the results. A value which is close to the minimum ofܧܰ
  .οܴ௦,ଶ of the majority of the standard scenarios is selectedܧܰ οܴ௦,ଵ andܧܰ
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Figure 12: Changes of Rrs for 10% increase of (A) TSM in the range 0.2 – 10.0 mg/l, (B) CHL in the range 0.2 – 
5.0 µg/l, (C) SCDOM in the range 0.010 – 0.020 nm-1, (D) depth in the range 0.01 – 10.0 m for bottom substrate 
of the seagrass Posidonia australia. 
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A2.3.4 Determination of radiometric sensor requirements 
In order to derive radiometric sensor requirements, top of atmosphere (TOA) simulations of 
radiance, ்ܮ𝐶𝐶𝑁𝑁(𝜆𝜆), are made for a few water types representing a wide range of aquatic ecosystems. 
The considered combinations of water constituents are summarized in Table 3.  

Table 3: Concentration combinations for top of atmosphere simulations.  

No. TSM [g m-3] aCDOM [m-1] CHL [mg m-3] Remark 
01 0.5 1 1  
02 0.5 1 10  
03 0.5 1 100  
04 0.5 3.16 1  
05 0.5 3.16 10  
06 0.5 3.16 100 largest ∆Rrs(𝜆𝜆)in NIR 
07 0.5 10 1 darkest Rrs(𝜆𝜆), used for a reference spectrum ்ܮ𝐶𝐶𝑁𝑁(𝜆𝜆) 
08 0.5 10 10  
09 0.5 10 100  
10 1.58 1 1  
11 1.58 1 10  
12 1.58 1 100  
13 1.58 3.16 1  
14 1.58 3.16 10  
15 1.58 3.16 100  
16 1.58 10 1  
17 1.58 10 10  
18 1.58 10 100  
19 5 1 1 brightest Rrs(𝜆𝜆) 
20 5 1 10 largest ∆Rrs(𝜆𝜆)in VIS 
21 5 1 100  
22 5 3.16 1  
23 5 3.16 10  
24 5 3.16 100  
25 5 10 1  
26 5 10 10  
27 5 10 100  

 

The 27 Rrs spectra resulting from the settings of Table 3 are shown in Figure 13. Some of the 
challenging water types have Rrs maxima below 0.005 sr-1 and minima in the order of 10-4 sr-1 in the 
range from 400 to 800 nm.  

Each of the Rrs spectra shown in Figure 13 is converted to top of atmosphere (TOA) spectral radiance, 
 𝐶𝐶𝑁𝑁(𝜆𝜆), using Modtran-5 (Berk et al., 2005). The sun zenith angle (SZA) is set to 10° and 70°்ܮ
(representing low and high latitude sun angles occurring in late spring, summer and early autumn), 
and horizontal visibilities (VIS) of 10 km and 80 km are chosen to represent turbid and very clear 
atmospheres. The aerosol type is set to maritime, and all calculations are made for a relative sun-
earth distance of 1. All simulations assume a Lambertian surface and exclude sun glint and sky glint. 
The Modtran-5 calculations are made at a spectral resolution of 5 cm-1. For adjusting the resolution 
to the Rrs simulations, a moving Gaussian filter with a full width at half maximum (FWHM) of 5 nm 
was applied. 

In order to investigate the changes of ்ܮ𝐶𝐶𝑁𝑁 induced by ecologically relevant concentration differences 
in dark waters, the Rrs differences induced by chlorophyll-a concentration changes of 10%, 20%, 30%, 
40% and 50% are calculated for the 27 parameter combinations of Table 3. Figure 14 shows the 



161 
 

resulting ∆Rrs spectra for 10% and 50% changes of CHL. All these ∆Rrs spectra are then converted to 
  .𝐶𝐶𝑁𝑁(𝜆𝜆), using Modtran-5்ܮ𝐶𝐶𝑁𝑁 differences, ο்ܮ

 

Figure 13: Remote sensing reflectance spectra used to simulate TOA radiances. No. 7 represents the darkest 
spectrum, no. 19 the brightest. 

 

 

Figure 14: BOA remote sensing reflectance differences used to determine TOA radiance differences. The 
darkest spectrum (no. 7) induces the lowest change in reflectance, but the brightest spectrum (no. 19) not 
the highest. The highest reflectance differences are attributed to spectra no. 6 (in the NIR) and no. 20 (in the 
VIS). 

If a sensor is able to measure the induced radiance differences, its noise is below ο்ܮ𝐶𝐶𝑁𝑁(𝜆𝜆), hence 
the ratio 

ܴܵܰ(𝜆𝜆)  𝐶𝐶𝑁𝑁(𝜆𝜆)்ܮ
ȟ்ܮ𝐶𝐶𝑁𝑁(𝜆𝜆) (7) 

defines the necessary signal-to-noise ratio of a measurement ்ܮ𝐶𝐶𝑁𝑁(𝜆𝜆) for resolving CHL changes at 
wavelength 𝜆𝜆. If a sensor fulfills equation (7) for at least one wavelength 𝜆𝜆, it bears the potential to 
derive CHL changes: 

ܴܵܰ(𝜆𝜆) 
𝐶𝐶𝑁𝑁(𝜆𝜆)்ܮ
ȟ்ܮ𝐶𝐶𝑁𝑁(𝜆𝜆)

. (8) 
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The minimum requirement to a sensor is derived from the plot of ܴܵܰ(𝜆𝜆) vs. 𝜆𝜆 for the 27 water 
types defined by Table 3. 

To derive a realistic range of TOA radiances, a dark and two bright TOA radiance spectra are 
calculated. The dark spectrum is obtained by converting the darkest Rrs spectrum from Table 3 (no. 7) 
to ்ܮ𝐶𝐶𝑁𝑁(𝜆𝜆) for low sun elevation (SZA = 70°) and clear atmosphere (VIS = 80 km).  

The two bright spectra represent optically deep water with high reflectance in the blue-green, and 
optically shallow water with high reflectance in the red-NIR spectral region. For deep water, a 
simulated spectrum Rrs from scenario Y-- is selected which combines very low absorption (aCDOM = 
0.04 m-1, CHL = 1 mg m-3) with very high backscattering (TSM = 20 g m-3). For shallow water, the 
simulated spectrum Rrs for bottom substrate no. 7 (purple encrusting coralline algae) is used as this 
substrate has very high reflectance in the near infrared (~40%, see Figure 1). The water depth is set 
to 1 cm to minimize attenuation by water and to obtain high Rrs even in the infrared. Once a 
dedicated aquatic ecosystem sensor application is well defined (preferably both science and end-user 
driven) it is advised to run more of these type of simulations with more varying conditions and 
parameterisations. This study focuses on generic considerations across a variety of aquatic 
ecosystems. 

A2.4. Results 

A2.4.1 Most relevant wavelengths 
A2.4.1.1 Reconstruction of reflectance spectra 

If a spectrum should be sampled with a minimum number of spectral bands, but as accurate as 
possible with a reduced set of bands (such as for a multispectral band sensor), the bands must be 
centered at the wavelengths at which the spectrum has minima and maxima. These wavelengths are 
given by the zeros of the first derivatives of remote sensing reflectance, i.e., wRrs/wλ = 0. If the major 
spectral features of a spectrum should be captured, the number of bands must be increased to 
measure the reflectance shoulders as well. These are given by the zeros of the second derivatives of 
remote sensing reflectance, i.e., w�Rrs/wλ� = 0. This chapter investigates the spectral locations of 
wRrs/wλ = 0 and w�Rrs/wλ� = 0 that allow reconstruction of the reflectance spectra of the scenarios 
presented in chapter 1 with a limited number of spectral bands. 

Figure 15 shows the results for the standard scenarios. The red lines indicate the positions of maxima 
and minima in Rrs(λ), i.e. the spectral locations of wRrs/wλ = 0, and their shifts induced by changing a 
single parameter. The green lines show the positions of shoulders, i.e. the wavelengths of w�Rrs/wλ� = 
0, as a function of a model parameter. Figure 16 shows the analog results for extreme scenarios. The 
subsequent Figures show the relevant wavelengths of reflectance spectra for different substrate 
types of optically shallow water as a function of water depth: Figure 17 for the depth range from 0 to 
0.5 m, and Figure 18 for the range from 0 to 10 m. 
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Figure 15: Zeros of first (red) and second derivatives (green) of standard scenarios. 
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Figure 16: Zeros of first (red) and second derivatives (green) of extreme scenarios. 
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Figure 17: Zeros of first (red) and second derivatives (green) of very shallow waters. 
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Figure 18: Zeros of first (red) and second derivatives (green) of shallow waters. 

In order to cover the variability within a scenario more completely, three parameters were iterated 
simultaneously, and the zeros of wRrs/wλ were calculated for all parameters. For each scenario, three 
parameters were changed in 10 steps, resulting in 103 = 1000 spectra. A histogram of the resulting 
spectral locations of the minima and maxima is shown in Figure 19 for the standard scenarios. 
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 382 608 677 699 746 751 806 

 
Figure 19: Cumulative histogram of the minima and maxima (wRrs/wλ = 0) for the standard scenarios. The 
most prominent wavelengths are labeled on top of the diagram. 

In the spectral range from 380 to 700 nm, the position of minima and maxima of Rrs changes 

significantly from one scenario to the next. This strong dependency of characteristic wavelengths on 

the water type is a strong argument for a hyperspectral sensor in that range. Multispectral sensors 

are of most benefit if these have bands centered at 382, 608, 677 and 699 nm, where many scenarios 

have a peak or dip in the reflectance spectrum. The scenarios C- and Y- have in addition six 

characteristic wavelengths between 470 and 550 nm (green and orange peaks at 472, 479, 499, 507-

515, 527 and 542 nm). 

The spectral range beyond 700 nm is characterized by just three extrema at 746, 751 and 806 nm, 

which don't depend much on the scenario. 

Figure 20 shows the histogram of the zeros of the first derivatives of the extreme scenarios. 
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 436 467 481 677 724,740-754 806-821 

 
Figure 20: Cumulative histogram of the minima and maxima (wRrs/wλ = 0) for the extreme scenarios. The 
most prominent wavelengths are labeled on top of the diagram. 

The positions of the reflectance minima and maxima of extreme scenarios are more variable than for 
the standard scenarios, and the range of large variability extends now up to 725 nm. The spectral 
features of such water types can be monitored best using a hyperspectral sensor in the range from 
380 to 725 nm. 

For multispectral sensors, the outstanding wavelengths of extreme scenarios are at 436, 467, 481, 
677 and 724 nm. The characteristic wavelengths above 700 nm depend now also slightly on the 
scenario. If these are not resolved by a hyperspectral sensor, the ideal multispectral sensor has 15 
nm wide bands ranging from 740 to 754 nm and 806 to 821 nm. 

Figure 21 shows a histogram of the zeros of the first derivatives of very shallow waters from 0 – 0.5 m 
depth. 
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Figure 21: Cumulative histogram of the minima and maxima (wRrs/wλ = 0) for very shallow water of 0 – 0.5 m 
depth.  

The location of minima and maxima is highly variable from 380 to 730 nm, thus accurate substrate 
classification requires a hyperspectral sensor in that range. The many peaks in the histogram from 
750 to 780 nm and from 830 to 900 nm, caused by substrate no. 8, can be attributed to noise of the 
substrate spectrum (cf. Figure 1). Useful for a multispectral sensor are mainly the extrema at 743 and 
807 nm. 
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Figure 22 shows a histogram of the zeros of the first derivatives of shallow waters from 0 – 10 m 
depth. 

 507 513 552 751 806 

 

Figure 22: Cumulative histogram of the minima and maxima (wRrs/wλ = 0) for shallow water of 0 – 10 m 
depth.  

Compared to the very shallow depths from 0 to 0.5 m, the histogram of the 0 – 10 m depth range 
reveals more clear features, i.e. the information from the bottom substrates is now more confined to 
specific wavelengths or wavelength intervals. Characteristic wavelengths can be identified at 507, 
513, 552, 751 and 806 nm. Significant variability, best monitored by a hyperspectral sensor, occurs 
between 540 and 680 nm. Most of the many extrema with low frequency outside these wavelength 
ranges can be attributed to the very shallow waters from Figure 21. 
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Figure 23 shows a histogram of the zeros of the second derivatives for the standard scenarios. 

 711 748-760 791 827,850-858,879,897 

 
Figure 23: Cumulative histogram of the shoulders (w�Rrs/wλ� = 0) for the standard scenarios.  

In the spectral range from 380 to 690 nm, the position of Rrs shoulders changes significantly from one 

scenario to the next. Outside this range, characteristic wavelengths for most of the scenarios are 

observed at 711, 748-760, 791, 827, 850-858, 879 and 897 nm. 
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Figure 24 shows a histogram of the zeros of the second derivatives for the standard scenarios. 

 711 748-760 789 827,850-858,879,897 

 
Figure 24: Cumulative histogram of the shoulders (w�Rrs/wλ� = 0) for the extreme scenarios.  

Similar as before, the position of Rrs shoulders changes significantly from one scenario to the next 
from 380 to 700 nm. The characteristic wavelengths outside this range are almost identical to the 
standard scenarios: 711, 748-760, 789, 827, 850-858, 879 and 897 nm. 
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Figure 25 shows a histogram of the zeros of the second derivatives for very shallow water of 0.01 – 
0.50 m depth. 

  748-760 792 827,850-858,878,899 

 
Figure 25: Cumulative histogram of the shoulders (w�Rrs/wλ� = 0) for very shallow water of 0.01 – 0.50 m 
depth.  

The wavelengths where the second derivatives are zero, i.e. the position of the shoulders of the 
reflectance spectrum, show a huge variability for optically very shallow water (0.01 – 0.50 m). 
Remarkably, the characteristic wavelengths above 700 nm, which were observed for deep water, are 
also present here: 748-760, 792, 827, 850-858, 878 and 899 nm. 
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Figure 26 shows a histogram of the zeros of the second derivatives for shallow water of 0 – 10 m 
depth. 

 711 748-760 789 827,850-858,879,897 

 
Figure 26: Cumulative histogram of the shoulders (w�Rrs/wλ� = 0) for shallow water of 0 – 10 m depth.  

Compared to the histogram of Figure 25, which is not much structured for very shallow waters below 
730 nm, the entire spectral range from 380 to 900 nm is now characterized by distinct peaks at 
certain wavelengths. If histogram peaks above a threshold of N=200 are counted (total number of 
runs: N=700), 23 prominent peaks can be identified, located at 457, 476, 492, 511, 523, 549, 556, 
584, 613, 620, 626, 629, 655, 675, 711, 748-752, 758-760, 789, 827, 850, 856-858, 879 and 897 nm. 
The histogram peaks above 700 nm are almost identical to those observed in the second derivatives 
of deep water and very shallow water. 

A graphical summary of the eight histograms (Figure 19 to Figure 26) is provided in Figure 27. It 
shows a wide spread of minima and maxima for different water types, and even more of the 
shoulders. The spectral shift of characteristic wavelengths is most pronounced in the range from 380 
to 730 nm, while the infrared region above approximately 730 nm is spectrally more stable. 
Consequently, the ideal sensor for capturing the characteristic features of reflectance spectra is 
hyperspectral in the visible, but could be multispectral in the infrared. 
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A list of the most relevant wavelengths is given in Table 4. It has been compiled using the first 
derivatives, i.e. the most frequent peaks and dips of reflectance spectra, and summarizes the major 
spectral features for reconstructing the reflectance spectra of the simulated scenarios. This table can 
be considered a compromise for multispectral sensors, which can cover a significant amount of the 
natural variability, albeit for the parameterisations as chosen for this study. 

 

 

 

 

 

 

 

 

 

 

 

Figure 27: Histograms of wavelengths of extremes (upper row, wRrs/wλ =0) and shoulders (lower row, 
w�Rrs/wλ� =0) of reflectance spectra in deep (left column) and shallow waters (right column). 
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Table 4: Characteristic wavelengths for which a significant number of the simulated reflectance spectra have 
a maximum, minimum or shoulder. Std = standard scenarios, Ext = extreme scenarios, Shore = very shallow 
water of depths 0 – 0.5 m, Shallow = shallow water of depths 0 – 10 m. 

No Wavelength Std Ext Shore Shallow Std Ext Shore Shallow 

  [nm] Zeros of 1st derivative Zeros of 2nd derivative 

1 382-387 x       x       
2 422         x x     
3 436   x             
4 453-457           x   x 
5 467   x             
6 475-481   x     x x   x 
7 492               x 
8 507-513       x x       
9 522-523         x     x 
10 534-538         x       
11 549-556       x x x   x 
12 584               x 
13 596-599           x     
14 608 x               
15 613         x x   x 
16 620         x x   x 
17 626-631         x x   x 
18 655-657           x   x 
19 668-674 x x x   x   x x 
20 699 x               
21 711         x x   x 
22 724-726   x     x       
23 742-743   x x           
24 746-754 x x   x x x x x 
25 758-760         x x x x 
26 789-792         x x x x 
27 806-807 x x x x         
28 813   x             
29 821   x             
30 827          x  x  x  x 
31 850         x   x  x x  
31 856-858         x x x x 
32 878-879             x x 
33 897-899             x x 
 

A2.4.1.2 Wavelengths of maximum sensitivity 

The wavelengths of maxima, minima and shoulders in reflectance spectra, which have been 
determined inAppendix A.2.3.1 are not necessarily identical to the wavelengths of maximum 
sensitivity to a parameter of interest. These spectral regions where changes of a certain parameter 
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induce the largest reflectance change are determined by applying Eq. (6). The results are shown in 
Figure 28. 

 

 

Figure 28: Wavelengths of maximum sensitivity to the parameter indicated top right. 
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The frequency distributions of the most sensitive wavelengths are shown in Figure 29. These 
histograms indicate the most sensitive spectral regions for measuring CHL, CYA, TSM, aCDOM and 
SCDOM. The label "Std" refers to the standard scenarios of Table 1, the label "Ext" to the extreme 
scenarios of Table 2.Figure 29 shows that the wavelengths of maximum sensitivity are concentrated 
in eight spectral regions, labeled A to H.  

Table 5 summarizes the center wavelengths and spectral widths of these regions. Most regions are 
spectrally narrow with widths of 8 nm or below (±1, ±3, ±4 nm); only the regions at 565 nm (±15 nm) 
and 641 nm (±8 nm) are much broader. 

A comparison with the results from Table 4 and with the center wavelengths suggested by IOCCG 
(2012) for ocean colour satellites is given in Table 6. IOCCG recommendations focused on 
atmospheric correction are omitted, as well as the characteristic wavelengths no. 25 to 33 from Table 
4 as these have no correspondence from the other methods. Remarkably, just two sensitive regions 
(A, C) coincide with prominent features of reflectance (7, 10). Hence, derivative analysis is not the 

Figure 29: Histograms of wavelengths of maximum sensitivity to the parameter indicated top right. The 
histogram "all" is the sum of the histograms for CHL, CYA, X, Y and S. The labels A to H indicate the most 
sensitive spectral regions. 
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method of first choice for identifying the best suited wavelengths for monitoring of CHL, CYA, TSM, 
aCDOM or SCDOM in optically deep water. 

Table 5: Spectral regions most sensitive to concentration changes of chlorophyll-a (CHL), cyanobacteria (CYA), 
total suspended matter (X), colored dissolved organic matter (Y), and to the spectral slope of CDOM 
absorption (S). Bold: standard scenarios, normal: extreme scenarios. 

Region Center [nm] +/- [nm] sensitive 
A 490 4 CHL, CYA, X, Y 
B 502 3 CHL, CYA, X, Y 
C 542 4 X, Y, S 
D 565 15 all 
E 592 4 CHL, CYA, X 
F 641 8 CHL, X, S 
G 676 1 CHL, CYA, X 
H 703 1 CHL, CYA, X 
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Table 6: Comparison of wavelengths relevant for measurements of optically deep water at bottom of 
atmosphere. IOCCG: recommended by IOCCG (2012) for ocean colour satellites; Reflectance: prominent 
features of reflectance spectra (see Table 4); Sensitive: high sensitivity to water constituents (see Table 5). 
Wavelengths common to independent methods or highly sensitive for many scenarios are marked in bold; 
recommended wavelengths are marked in yellow. 

IOCCG Reflectance Sensitive Application 
385 1 382-387     CDOM-CHL separation 

400         CDOM-CHL separation 

425 2 422     CDOM-CHL separation 

  3 436       

443         Chl-a absorption peak 

  4 453-457       

460         Accessory pigments & Chl 

  5 467       

475 6 475-481     Accessory pigments & Chl 

490 7 492 A 490 CHL band-ratio algorithm 

      B 502   

510 8 507-513     CHL band-ratio algorithm 

  9 522-523       

532         MODIS band (10 nm) 

  10 534-538 C 542 Bio-optical algorithms 

555 11 549-556     Bio-optical algorithms 

      D 565 Bio-optical algorithms 

583 12 584     Phycoerythrin 

      E 592 Bio-optical algorithms 

  13 596-599       

  14 608       

  15 613       

620 16 620     Cyanobacteria, suspended sediment, phycocyanin 

  17 626-631       

640     F 641 Particulate backscatter 

655 18 655-657     CHL-b 

670 19 668-674     
Fluorescence line height baseline; chlorophyll in 
highly turbid water 

678     G 676 Fluorescence line height 

  20 699       

      H 703 Particles; phytoplankton at high concentrations 

710 21 711     
FLH baseline; HABs detection; CHL in highly turbid 
water; turbid water atmosphere correction 

  22 724-726       

  23 742-743       

748 24 746-754     
Atmospheric correction open ocean; CHL in highly 
turbid water 
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A2.4.2 Optimal spectral resolution 
A2.4.2.1 Deep water 

The optimal spectral resolution for resolving all radiometric details with a relative radiometric 

resolution of 1% was calculated using Eq. (4). Figure 30 shows the results for the standard scenarios, 

and Figure 31 for the extreme scenarios. The legend for the colors is shown in Figure 11. The color 

changes in steps of 2.5 nm, i.e. dark blue is 0 to 2.5 nm, light blue 2.5 to 5.0 nm, and so on. 

With the exception of the extreme scenarios X++ and C++, the optimal spectral resolution changes 

significantly at 730 nm: a resolution of 5 nm or better (light blue, dark blue) can be used to resolve 

spectral details below 730 nm, while a resolution of 10 nm or less (orange, red, pink, white) is 

favourable for most scenarios above 730 nm to minimize the noise of these bands, which are 

characterized by very low reflectance values. Frequently a spectral resolution of 20 nm or more 

(white) is sufficient above 730 nm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



182 
 

X- 
aCDOM 
[m-1] 

0.2 
 
2  

X- 
CHL 
[mg m-3] 

0.5 
 
15  

X- 
SCDOM 
[nm-1] 

0.010 
 
0.020  

X+ 
aCDOM 
[m-1] 

1 
 
5  

X+ 
CHL 
[mg m-3] 

1 
 
20  

X+ 
SCDOM 
[nm-1] 

0.010 
 
0.020  

Y- 
TSM 
[g m-3] 

0.2 
 
10  

Y- 
CHL 
[mg m-3] 

0.2 
 
5  

Y- 
SCDOM 
[nm-1] 

0.010 
 
0.020  

Y+ 
TSM 
[g m-3] 

1 
 
10  

Y+ 
CHL 
[mg m-3] 

1 
 
20  

Y+ 
SCDOM 
[nm-1] 

0.010 
 
0.020  

C- 
TSM 
[g m-3] 

0.2 
 
20  

C- 
aCDOM 
[m-1] 

0.04 
 
2  

C- 
SCDOM 
[nm-1] 

0.010 
 
0.020  

C+ 
TSM 
[g m-3] 

5 
 
15  

C+ 
aCDOM 
[m-1] 

1.5 
 
4  

C+ 
SCDOM 
[nm-1] 

0.010 
 
0.020  

   400 500 600 700 800 90  
  Wavelength [nm] 
Figure 30: Optimal spectral resolution for the standard scenarios of optically deep water. 
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Figure 31: Optimal spectral resolution for the extreme scenarios of optically deep water. 
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A2.4.2.2 Optically shallow water 

The optimal spectral resolution for very shallow water (0 to 0.5 m) is shown in Figure 32, and for 
shallow water (0 to 10 m) in Figure 33. 
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Figure 32: Optimal spectral resolution for very shallow waters of 0.01 – 0.5 m depth. 
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Figure 33: Optimal spectral resolution for shallow waters of 0.01 – 10 m depth. 

A2.4.2.3 Recommended spectral resolution 

The previous sections show that the optimal spectral resolution depends on the water type. To 
obtain a sensor recommendation, the resolutions were averaged for all water types of the standard 
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scenarios (Figure 30), extreme scenarios (Figure 31), very shallow waters from 0.01 to 0.5 m depth 
(Figure 32) and shallow waters from 0.01 to 10 m depth (Figure 33). The result is shown in Figure 34. 

 

 

Figure 34: Averages of optimal spectral resolutions. Left: for optically deep water. Right: for optically shallow 
water.  

It can be seen in Figure 34 left that the average of the optimal spectral resolutions of the optically 
deep water scenarios is in the order of 5 nm from 380 to 737 nm, and around 15 nm above 737 nm 
(green line). Figure 34 right shows a similar result for shallow waters in the range from 0.01 to 10 m, 
while for very shallow waters (0.01 to 0.5 m), which are more representative of land surfaces than of 
water, a resolution of 5 nm is also appropriate in the near infrared. 

The strong spectral variations of the averages are caused by the dependencies of the optimum 
resolution on wavelength and water type. In other words, the spectral properties of the optimal 
sensor depend on the water type. The green line is a fair compromise for all considered water types 
and wavelengths. Thus, the recommended spectral resolution of a hyperspectral sensor is 5 nm from 
380 to 737 nm, and 15 nm from 737 to 900 nm. 

A2.4.3 Radiometric resolution 

The optically deep water scenarios are used to derive a recommendation for radiometric resolution 
since these encompass the dark targets driving the requirement for radiometric sensitivity. Shallow 
waters are generally much brighter and thus not considered here.  

The required radiometric resolution is estimated using two approaches. The first specifies the noise-
equivalent remote sensing reflectance NE∆Rrs,1 in terms of 1% of the remote sensing reflectance 
difference between 400 and 800 nm according to Eq. (5). The results are shown in Figure 35. 
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Figure 35 summarizes the results for three parameters of interest, i.e. total suspended matter (TSM), 

colored dissolved organic matter (aCDOM) and chlorophyll-a (CHL). In each plot, the parameter of 

interest was kept constant at the scenario-specific values given in Table 1 and Table 2, and the other 

parameters of interest and the slope of CDOM absorption (SCDOM) were iterated in 10 steps in the 

ranges given also in Table 1 and Table 2. Thus, for each parameter of interest, 10
3
 = 1000 spectra 

were simulated for each scenario. Applying Eq. (5) resulted in the 24,000 values of NE∆Rrs,1 of Figure 

35. 

Figure 35 quantifies the known fact that the required radiometric sensitivity decreases with 

increasing TSM and decreasing CDOM, and depends not much on CHL. The reflectance spectra of all 

considered scenarios can be sampled at a radiometric resolution of 1% or better for NE∆Rrs = 10
-6

 sr
-1

, 

which is technically very demanding. A NE∆Rrs of 10
-5

 sr
-1

 is sufficient for most parameter 

combinations of the standard scenarios, except scenarios Y+ and C- for TSM < 1 g m
-3

, scenario C- for 

Figure 35: Rrs difference corresponding to 1% of the dynamic range of Rrs. Left column: standard scenarios, right 
column: extreme scenarios. 
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aCDOM > 0.4 m-1, and scenario X- for aCDOM > 2 m-1. The extreme scenarios require more frequently a 
NE∆Rrs between 10-5 and 10-6 sr-1. 

The second approach is given by Eq. (6). It specifies the noise-equivalent remote sensing reflectance 
NE∆Rrs,2 as the maximum change of Rrs in the wavelength range 400 to 800 nm induced by a 10% 
change of the parameter of interest. The results are shown in Figure 36 for the standard scenarios 
and in Figure 37 for the extreme scenarios as a function of the wavelength of maximum sensitivity. 

Similar as before, each plot summarizes the natural variability within a number of scenarios. CHL, 
TSM, aCDOM and SCDOM were now treated as parameters of interest. Each of these was iterated for 
each scenario in 10 steps in the ranges given in Table 1 and Table 2. Simultaneously to the parameter 
of interest, two other parameters from the set (CHL, TSM, aCDOM, SCDOM) were iterated in 10 steps 
each in order to capture the variability. For example, the required sensitivity for CHL in scenario X- 
was calculated by setting TSM = 1 g m-3 and iterating CHL from 0.5 to 15 mg m-3 in 10 steps, and for 
each step, iterating aCDOM from 0.2 to 2 m-1 and SCDOM from 0.010 to 0.020 nm-1. In this way 36,000 
values of NE∆Rrs,2 were calculated. 

Figure 36: Maximum change of Rrs for a 10% change of the parameter indicated top right for the standard 
scenarios. 
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Figure 36 and Figure 37 show that a NE∆Rrs of 10-5 sr-1 is sufficient to resolve 10% changes of TSM, 
aCDOM and S for all standard scenarios and for the majority of the conditions studied for the extreme 

scenarios. However, CHL requires NE∆Rrs down to 3 × 10-6 sr-1 for the standard scenarios, and even 

below 1 × 10-6 sr-1 for the extreme scenarios. High sensitivity is particularly required for retrieval of 
low CHL concentrations in dark waters with low TSM or high CDOM concentration (scenarios X-, X--, 

Y++). This dependency on CHL concentration is illustrated in Figure 38. 

 

Figure 38: Dependence of NE∆Rrs,2 required to discriminate a 10% change of chlorophyll-a concentration on 
CHL. 

Both approaches lead to the same conclusion that a noise-equivalent remote sensing reflectance of 

NE∆Rrs = 1 × 10-5 sr-1 should be targeted. It is sufficient for most considered scenarios, except for 
detection of chlorophyll-a differences in dark waters. The ideal sensor, which is also sensitive to CHL 

differences under difficult conditions, should be able to resolve a NE∆Rrs of 1 × 10-6 sr-1. 

Figure 37: Maximum change of Rrs for a 10% change of the parameter indicated top right for the extreme 
scenarios.  
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The derived NE∆Rrs values are the maximum changes of Rrs in the range from 400 to 800 nm. These 
make 10% changes of the considered parameter principally detectable, but this does not necessarily 
mean that the parameter can be identified and distinguished from other parameters. Figure 36 and 
Figure 37 show that CHL, TSM, aCDOM and S have no specific spectral region which could be attributed 
uniquely to one of them, but each can induce strong changes to Rrs almost anywhere in the visible. 
Thus, classification requires in most of the considered water types spectral information from other 
wavelengths with less pronounced Rrs changes, i.e. the radiometric resolution must be even higher 
for quantitative data analysis.  

A2.4.4 Radiometric sensor requirements 

The TOA radiance spectra with the lowest and highest intensities are of particular interest for sensor 
design. These are shown Figure 39. The spectra are presented in two spectral resolutions: 5 cm-1 and 
resampled to a full width at half maximum (FWHM) of 5 nm. 

 

 

Figure 39: Darkest (left) and brightest (right) radiance spectra at top of atmosphere 

As shown in section 4.3, most challenging for remote sensing are dark waters with low concentration 
of TSM or high concentration of CDOM. In order to derive radiometric sensor requirements, top of 
atmosphere (TOA) simulations were made for these critical water types as described in section 3.4.  

Figure 40 shows as example the TOA simulations for the darkest (no. 7 of Table 3) and brightest Rrs 
spectra (no. 19). Compared to the large differences of Rrs, the ்ܮ𝐶𝐶𝑁𝑁 spectra do not differ much, 
demonstrating that TOA radiance is dominated by the atmosphere, while the water leaving radiance 
contributes only little to the signal at the satellite. 
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Figure 40: At-sensor radiances for the darkest and brightest spectra of Table 3 for different combinations of 
sun zenith angle (SZA) and visibility (VIS).  

To investigate the changes of ்ܮ𝐶𝐶𝑁𝑁 induced by ecologically relevant concentration differences in dark 
waters, the Rrs differences induced by 10% changes of chlorophyll-a (Figure 14) were converted to 
radiance differences, ο்ܮ𝐶𝐶𝑁𝑁(𝜆𝜆), using Modtran-5. Two examples are shown in Figure 41. 

 

 

Figure 41: At-sensor radiance differences for 10% changes of chlorophyll-a concentration. 

The comparison of Figure 40 with Figure 41 shows that ȟ்ܮ𝐶𝐶𝑁𝑁 is around 4 orders of magnitude lower 
than ்ܮ𝐶𝐶𝑁𝑁. Examples of their ratio are shown in Figure 42. 

 

Figure 42: SNR required to detect 10% changes of chlorophyll-a concentration. 
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The ratios 
ೀಲ(ఒ)

ೀಲ(ఒ) are strongly dependent on wavelength. Their minima define the minimum sensor 

requirements according to Equation (8), and the wavelengths of the minima (𝜆𝜆) specify the spectral 
regions of maximum sensitivity of ்ܮ𝐶𝐶𝑁𝑁. Figure 43 shows these minima for the considered water 
types, atmospheric conditions and sun zenith angles.  

 

Figure 43: Minimum SNR required to detect 10% changes of CHL. One value is outside the shown SNR range 
(SNR 12,192 for SZA 70°, VIS 10 km). The dashed horizontal lines show the SNRs that cover more than 80% 
(red) and more than 90% of the studied cases (green). 

The most sensitive wavelengths 𝜆𝜆 are in the yellow-red spectral region between 550 and 715 nm. 
They are not in the blue-green as for the open ocean since the water types chosen for the 
simulations are dominated by CDOM, which absorbs strongly at short wavelengths. 

A SNR statistics is presented in Table 7. It can be concluded that a SNR of at least 2000:1 from 550 to 
715 nm should be targeted. It produces, for more than 80% of the studied cases, a detectable signal 
at top of atmosphere. To cover more than 90% of the cases, a SNR of 4000:1 is required. A low sun 
elevation (70° SZA) in combination with a turbid atmosphere (10 km VIS) constitutes most of the 
critical cases. 

Table 7: SNR statistics specifying the relative number of cases in which 10% changes of chlorophyll-a produce 
a detectable signal at top of atmosphere.  

SNR cases [%] 

10,000 98.1 

4,000 92.6 

3,000 88.0 

2,000 81.5 

1,500 74.1 

1,000 67.6 

 

It should be noted that the SNR is frequently used in a misleading and confusing way. Since the SNR 
depends on the signal and the measurement noise, it specifies the quality of a measurement, but not 
of a sensor. Confusion is caused by the fact that it is common practice to use the SNR for comparing 
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or specifying optical sensors, even though no common definition of the underlying signal exists. To 
mention a few, the saturating signal is sometimes taken, sometimes a 30% or 5% bottom albedo in 
combination with a certain sun zenith angle and atmosphere condition, and sometimes a given TOA 
radiance spectrum. This inconsistent usage of SNR makes the comparison of sensors difficult (see Hu 
et al., 2012 for a method to compare sensors with varying SNR definitions). 

A suitable parameter for comparing or specifying the radiometric sensitivity of sensors is the noise-
equivalent radiance difference, ܰܧοܮ, which is a sensor property. It can be compared directly with 
observed or expected radiance differences οܮ at top of atmosphere. Such a comparison is shown in 
Figure 44 for the TOA simulations and the sensor MERIS. 

 

Figure 44: Maximum radiance differences induced at top of atmosphere by 10% changes of CHL (left) and by 
50% changes of CHL (right). The noise-equivalent radiance difference of MERIS is shown for comparison. 

Low sun elevation produces lower radiance differences than high sun elevation. A ∆L statistic is 
presented in Table 8. 10% changes of CHL produce, in more than 80% of the studied cases, radiance 
differences above 0.010 mW m-2 sr-1 nm-1 at top of atmosphere, and in more than 90% the induced 
radiance changes are above 0.005 mW m-2 sr-1 nm-1. The radiance changes are proportional to the 
CHL changes, thus a sensitivity of 0.010 mW m-2 sr-1 nm-1 is almost always (98.1% of the cases) 
sufficient to detect 50% changes of CHL. Table 8 thus leads to the recommendation that the sensor 
should be able to resolve radiance differences NE∆L of at least 0.010 mW m-2 sr-1 nm-1 in the range 
from 550 to 715 nm.  

Table 8: Statistics specifying the relative number of scenarios (# in %) in which certain changes of chlorophyll-
a produce a radiance difference larger than ∆L at top of atmosphere. Note that the number of scenarios 
cannot be related to numbers or areas of the lakes on Earth. 

CHL change� 10% 20% 30% 40% 50% 

∆L [mW m-2 sr-1 nm-1] # # # # # 

0.005 91.7 97.2 100 100 100 

0.010 82.4 91.7 95.4 97.2 98.1 

0.015 78.7 86.1 91.7 94.4 96.3 

0.020 69.4 82.4 88.0 90.7 92.6 
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It should be noted that such sensitivity is required for the sensor reacting to CHL induced differences, 
but this does not imply that data analysis is able to detect or quantify the CHL changes. Data analysis 
is always difficult close to the sensitivity limit of a measurement device, thus a significantly higher 
sensitivity may be desirable from the perspective of measurement interpretation. Specifying a 
methodologic sensitivity add-on is however difficult since it depends on the inversion algorithms, 
which are numerous. 
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