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Executive Summary 
 

Exposure to particulate pollution is a severe burden to public health worldwide. Information on 
near-surface concentrations of particulate matter (PM) is needed on a global scale: as input to air quality 
services for citizens, to support policy makers in evaluating the efficacy of pollution abatement 
measures, and to help environmental agencies verify compliance with standards on pollution levels and 
related emissions.  

Satellite observations do offer valuable information on PM. However, they alone are not 
sufficient to provide the needed PM products. A combination of ground-based measurements, satellite 
observations, and information from atmospheric chemistry and transport models is needed for 
monitoring and forecasting near-surface PM concentrations. At present, satellite observations are not 
yet optimally exploited for PM estimation.  

A host of space-borne sensors capture different aspects of PM: multispectral broadband imagers 
observe the horizontal distribution of the vertically integrated burden, multi-angle and polarimetric 
broadband imagers also allow constraining particle size and type, hyperspectral spectrometers provide 
some information on the vertical distribution as well as spectral absorption and speciation fractions of 
absorbers in smoke and dust, and lidars capture the vertical distribution of the particle load along 
narrow tracks. These capabilities and their synergistic exploitation offer a great potential to improve PM 
estimation. 

The present white paper takes stock of the current and planned sensors with strong potential 
for constraining PM, and of schemes used for generating particulate pollution products and services. 
Specific and actionable recommendations are made to strengthen the role of satellites in constraining 
PM levels and to help in creating satellite-informed particulate pollution products.  
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Recommendations  

1. Pursue the exploitation of the near-real time (NRT) information on Particulate Matter (PM) from 
meteorological imagers.  

2. Pursue the use of aerosol height information from hyperspectral imagers for constraining 
surface PM. Pursue the development of related fast forward operators. 

3. Pursue the full exploitation of the information from multi-angle and multi-angle polarimetric 
imagers for constraining surface PM. 

4. Continue efforts to establish, monitor, and enhance the consistency of AOD and other aerosol 
products relevant to PM from space-borne sensors. Continue and strengthen related efforts 
made by the AEROSAT community. 

5. Pursue the development of synergistic retrievals in order to combine the best available 

information on aerosol amount, type (proxy for composition), and vertical distribution from 

multiple sensors.  

6. Continue efforts to establish, monitor, and enhance the radiometric calibration consistency of 

space-borne multispectral imagers. Continue and strengthen related efforts made by the Global 

Space-based Inter-Calibration System (GSICS). 

7. Further develop and enhance statistical PM estimation tools including schemes based on 
machine learning.. 

8. Continue to develop the ability of chemical transport models to relate AOD to PM2.5 to represent 
long-term PM2.5 concentrations. 

9. Continue and reinforce efforts (such as those made by the AEROCOM community) to evaluate 

and improve the skill of aerosol models and the capability of aerosol assimilation schemes.  

10. Pursue scientific developments to identify ways to improve the consistency of the 

representation of aerosols between models and satellite products. 

11. Reinforce efforts to improve uncertainty estimates in satellite aerosol products, in order to 

facilitate their use in data assimilation schemes. 

12. Pursue the development of schemes for assimilating Earth radiances measured by space-borne 

sensors. 

13. Collect and analyze comprehensive reference data sets including measurements from ground-
based in-situ PM sensors and co-located radiometers and ceilometers, in order to enhance the 
understanding of the link between satellite observables and near-surface PM concentrations. 

14. Validate satellite-informed PM products, using ground-based in-situ PM data from operational 
networks. Pursue extending the source of PM reference data by calibrating low-cost PM2.5 
sensors and developing correction methodologies. 

15. Create a data center for providing access to validation data. 
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1. Introduction  
 

Air pollution by PM is recognized to be a major threat to human health worldwide. A large part 
(90%) of the world population lives in places where the ambient air quality guidelines set by the World 
Health Organization (WHO) are not met; limits set for PM are often exceeded, especially in urban areas 
in the Eastern Mediterranean region, the African and South‐East Asian regions and areas within the 
Western Pacific region. Air pollution caused 4.2 million premature deaths (~60 per 105 inhabitants) 
worldwide in 2016 (WHO, 2018a; WHO, 2018b). In Europe, in the same reference year, 75 premature 
deaths per 105 inhabitants have been reported to be attributable to PM (EEA, 2019). 

PM refers to solid or liquid phase particles suspended in air. Coarse particles originate mainly 
from soil (mineral dust) or from sea spray (sea salt). Fine and ultrafine particles are formed primarily by 
condensation from the gas phase. Many of the precursor gases involved in this secondary particle 
formation originate from fossil fuel combustion. Fine and ultrafine particles often consist of a mixture of 
elemental carbon, organic compounds, metals, nitrates, and sulfates. PM is often classified based on the 
particle size: the labels PM10, PM2.5 and PM1 refer to particles with a median diameter smaller than 10 
μm, 2.5 μm, and 1 μm, respectively. This classification accounts for the fact that smaller particles tend to 
have more severe adverse health effects than larger ones. Particles larger than 2.5 μm are largely 
filtered in the lung by the bronchi and bronchioles, whereas smaller particles can pass this barrier, enter 
the bloodstream, and cause a wide range of health problems including cardiovascular diseases, 
respiratory diseases, allergies, and even gene mutations. The overall toxicity of PM is determined by 
both the particle size and its chemical composition (e.g. Nel, 2005). 

Legal standards and guidelines regulating near-surface air pollution levels including PM10 and 
PM2.5 have been established e.g. by the WHO (WHO, 2021), the European Union European Commission 
(EC, 2008), and the United States Environmental Protection Agency (US EPA, 2020) (see Table 1). While 
setting thresholds is useful for the formulation of targets and for reporting, there seems to be no limit 
below which health impacts can be excluded (Pinault et al., 2016; Crouse et al., 2012; Di et al., 2017a; Di 
et al., 2017b). National environmental agencies operate networks of ground-based stations where the 
concentrations of various trace gases and PM are measured in situ, and the data records from these 
stations are used for exposure estimation, verifying compliance with air quality standards and assessing 
the effectiveness of air pollution abatement measures. For example, the US EPA monitors air quality in 
the US in line with several legislative mandates such as the Clean Air Act (US EPA, 1990); the European 
Environmental Agency (EEA) coordinates the air quality reporting based on measurements from national 
networks in the European countries. 

A growing number of information services focus on air quality. Daily analyses and forecasts of 
atmospheric composition with regional or even global coverage are obtained using atmospheric models 
describing weather, transport, and chemistry, such as ECMWF's Integrated Forecasting System (IFS; 
https://www.ecmwf.int/en/publications/ifs-documentation), NOAA's Global Ensemble Forecast System 
(GEFS; https://www.noaa.gov/media-release/noaa-upgrades-global-ensemble-forecast-system), and the 
global forecasting system of the Copernicus Atmosphere Monitoring Service (CAMS; 
https://atmosphere.copernicus.eu/cams-upgrades-its-global-forecasting-system-0), that are run on 
high-performance supercomputers. Advanced techniques, including data assimilation methods, are 
employed to ingest information from satellite or in-situ observations into the models. Global satellite-
informed annual PM2.5 estimates have been available for over a decade (van Donkelaar et al., 2010).  
Building on analysis and forecast data, numerous downstream services, including smartphone 
applications, disseminate warnings related to the current local air quality. In such applications, the 
overall air quality is often captured by a single air quality index that is computed based on the 

https://en.wikipedia.org/wiki/Bronchi
https://en.wikipedia.org/wiki/Bronchiole
https://www.ecmwf.int/en/publications/ifs-documentation
https://www.noaa.gov/media-release/noaa-upgrades-global-ensemble-forecast-system
https://atmosphere.copernicus.eu/cams-upgrades-its-global-forecasting-system-0
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concentrations of a small set of key pollutants including PM10 and PM2.5 (e.g., AirNow, 
https://www.airnow.gov). 
 
Table 1. Guidelines for ambient air pollution by PM set by the WHO, the EU and the US EPA. 

Pollutant Averaging period Organization Limit [μg/m3] Percentile 
Maximum number of 

exceedances 

PM10 

1 day 

WHO 45 99th 3 

EU 50 - 35 

EPA 150 - 1 (averaged over 3 years) 

Calendar year 
WHO 15 - - 

EU 40 - - 

PM2.5 

1 day WHO 15 99th 3 

1 day EPA 35 98th 1 (averaged over 3 years) 

Calendar year 
WHO 5 - - 

EU 25 - - 

3 years EPA 12(1), 15(2) - - 

 
(1) Primary Standards protect public health, including the health of sensitive groups 
(2) Secondary Standards protect public welfare (visibility, crops, vegetation, and buildings) 

 
 

The global mortality estimates attributable to PM are based on annual concentrations that 
reflect the association of long-term exposure to PM2.5 with adverse health outcomes including ischemic 
heart disease, cerebrovascular disease, chronic obstructive pulmonary disease, lung cancer, and 
respiratory infections (Cohen et al., 2017). Thus, in addition to near-real-time information sources, 
efforts are needed to continue to develop the quality of long-term satellite-informed estimates. 

For the characterization of PM in a given spatial and temporal domain, many parameters need 
to be known, including the number density, size distribution, microphysical properties, hygroscopic 
state, and vertical distribution. Three main information sources are typically used to characterize PM: 
ground-based instruments, satellite sensors, and atmospheric modeling. In practice, only a few pieces of 
information are available from each of these information sources, which makes the estimation of PM 
concentrations and the monitoring of near-surface particle pollution a highly under-constrained 
problem. Therefore, in current estimation and monitoring schemes, data from a combination of the 
three information sources are exploited. Atmospheric models capture the scientific understanding of 
the driving processes including sources, transport and sinks of the pollutants. Satellite observations are 
complementary to ground based data. Both are key ingredients to meaningful and accurate estimates of 
pollution levels from the local to the global scale. In practice, satellite-informed particulate pollution 
products and services integrate prior information and information from the various types of 
observations either by data assimilation or by applying statistical methods, as schematically sketched in 

https://www.airnow.gov/
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Figure 1. At present, various PM estimation approaches that exploit satellite observations are employed 
in support of a range of applications, including attribution of mortality rates to real time alerts and 
warning services. The improvement of existing schemes and the development of new concepts for PM 
estimation is currently a dynamic area of research. However, the full potential of satellite observations 
has not yet been exploited, and opportunities exist to strengthen their role in enhancing PM estimation. 

Space-borne sensors do have strong potential to constrain particulate pollution: multispectral 
imagers provide valuable information on the horizontal distribution of the aerosol burden. Their 
synoptic view is key to evaluating the consistency of ground-based stations and for covering the gaps 
between stations. Observations from passive satellite sensors are sensitive to the total column aerosol 
optical depth (AOD; i.e. the vertically integrated extinction coefficient) but are limited in their capability 
to resolve the vertical profile. Lidars (active sensors) have the unique capability of resolving the vertical 
distribution of aerosol but are limited in their horizontal sampling. Spectrometric measurements at 
strong atmospheric gas absorption features also allow for constraining the vertical distribution of trace 
gas precursors of PM. Polarimetric, multispectral, and multidirectional observations bring information 
on the aerosol amount, size and type. Geostationary sensors capture the diurnal evolution of pollution 
fields. Satellite sensors can capture emission events such as from wildfires that are not predictable by 
models. 
 
 

 
Figure 1. Schematic view of a satellite-informed PM monitoring system. Various satellite data products can bring 
relevant information: this includes Level 2 products that characterize the horizontal distributions of the total 
column aerosol optical depth, the aerosol type, and the aerosol vertical distribution, and also Level 1 Earth 
radiance or reflectance products.  

 
 

However, the link between the data products from these kinds of sensors and near-surface PM 
concentrations is complex. Aerosol optical properties that govern the satellite observations depend on 
the hygroscopic state of the particles and hence on the ambient humidity, whereas PM concentrations 
refer to particles at controlled relative humidity (typically within 30% to 60%). Parameters such as AOD 
retrieved from imagers rely on prior assumptions on particle size distribution, vertical distribution, and 
microphysics. The treatment of surface reflectance and clouds in aerosol retrieval schemes can have a 
substantial influence on the data products. Error characterization of aerosol products is difficult, 
especially for products based on discrete aerosol models. The consistent interpretation of PM 
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information from satellites in the context of information from other sources, such as ground based 
measurements and models, is one of the main challenges that must be addressed in the development of 
satellite-informed PM monitoring.  

 
The objective of the present white paper is to strengthen the role of satellites in constraining 

particulate pollution levels, specifically near-surface PM2.5 concentrations. The ambitious long-term 
goal is to create a satellite-informed PM pollution monitoring system. The present white paper is 
meant to help taking steps in that direction. 

 
To this end, this white paper looks at all necessary elements and the various satellite sensors in 

a constellation perspective. An inventory is made of the current and planned sensors with relevant 
capabilities for constraining PM. The state-of-the-art schemes used for generating particulate pollution 
products and services are discussed. Specific and actionable recommendations are made on the 
development and enhancement of satellite-informed particulate pollution products. The optimal use of 
all available information is meant to improve air quality services for citizens and for policy makers. 
Satellite-informed PM products are meant to offer environmental agencies an additional source of 
information that complements the data products from in-situ networks. 

The white paper theme “satellite observations of aerosol for air quality” was picked up by the 
Atmospheric Composition – Virtual Constellation (AC-VC) community, recognizing that it was not 
covered by other inter-agency coordinating groups such as the International Aerosol Satellite Network 
(AEROSAT) or the Coordinated Group of Meteorological Satellites (CGMS). Sessions on this topic were 
held at the AC-VC meeting first in 2017 and at subsequent meetings in which the new initiative took 
shape, a new active topical sub-group emerged, and the scope of the present white paper was devised. 

The white paper is organized as follows: The current and planned satellite sensors with aerosol 
observing capabilities are identified and their specific potential for constraining near-surface PM is 
discussed in Section 2. Typical capabilities and limitations are discussed for sensor classes. Details on 
specific satellites and instruments in these classes are given in Appendix A. Section 3 is dedicated to 
aerosol products from these sensors with a focus on the consistency of the various products and 
methods to harmonize them. Section 4 deals with approaches to constrain PM using satellite data, 
including statistical methods and data assimilation techniques. Potential improvements to current 
schemes are discussed. Section 5 identifies measurement data needed to validate and enhance PM 
estimation schemes that exploit satellite data. A brief outlook on future activities is given in Section 6. 
Specific and actionable recommendations are introduced and formulated in the various sections of the 
white paper. An executive summary and a concise list of recommendations are provided at the 
beginning of the document.  
 
 

2. Current and Planned Sensors that Provide Aerosol Information 
 

Today, a variety of space-borne sensors are used for observing atmospheric aerosol. The last 
two decades have seen a tremendous growth in the use of remotely sensed aerosol products for various 
applications. Some specific applications include using near real-time aerosol imagery (true color, AOD, 
false color, etc.) in operational air quality forecasting, using AOD to derive surface PM2.5, using AOD to 
improve model first guesses, and using AOD to derive fire emission amounts and properties. The 
collection of high quality AOD data enabled the scientific community to quickly evaluate the 
improvements in air quality during the lockdown measures around the globe (Gkatzelis et al., 2021). 
Satellite AOD observations are being used to monitor urban/industrial pollution and its trends and to 
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understand the efficacy of various pollution abatement measures. Blended AOD products from models 
and observations scaled to surface PM2.5 have been used to document the impact on human health for 
over a decade (Lim et al., 2012; Castillo et al., 2021). 

Comprehensive overviews of satellite instruments observing atmospheric aerosols are given 
amongst others by Lee et al. (2009), Lenoble et al. (2013), Sogacheva et al. (2020), and Dubovik et al. 
(2019). Here, we focus on the sensors with observation capabilities covering the lower troposphere that 
are relevant for PM monitoring. The satellite sensors can be grouped into a set of classes: multispectral 
and/or multi-viewing imagers, hyper-spectral imagers (spectrometers), polarimetric multispectral 
imagers with multiple viewing directions, and lidars. Ground-based sensors are classified as in-situ, 
passive remote sensing, or active remote sensing. Typical aerosol observation capabilities of these 
sensor classes are listed in Table 2. Specific strengths and limitations of the observations made by these 
sensors for PM applications are discussed in the subsequent sections (2.1 to 2.5). In Appendix A, 
individual sensors on current and planned satellites that fall into these classes are described in more 
detail and summarized in Tables A1 and A2.  
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Table 2. Typical capabilities of the various satellite and ground based sensor classes. 

Sensor class 
Horizontal 

coverage and 
resolution 

Revisit time / 
temporal sampling 

Information content 

Multispectral 
imagers 

LEO 
Global, sub-km 
resolution 

Daily 
Amount (AOD), size (Ångström 
coefficient) over land 

GEO 
Full disc, sub-km 
resolution 

~10 minutes 

Multispectral imagers 
with multiple viewing 
directions in LEO 

Global, ~1 km 
resolution 

Few days 

Amount (AOD), size (Ångström 
coefficient), some info on 
particle shape and light-
absorption 

Hyperspectral 
imagers 
(spectrometers)  

LEO 
Global, ~10 km 
resolution 

Daily 
Amount (AOD), size (Ångström 
coefficient), vertical 
distribution (ALH with ~1 DFS 
from O2 signatures), spectral 
absorption and absorber 
concentrations 

GEO 
Partial disc, ~10 
km resolution 

Hourly 

Polarimetric 
multispectral imagers 
with multiple viewing 
directions in LEO 

Global, ~5 km 
resolution or 
targeted, ~1 km 
resolution 

Few days 

Amount (AOD), size (Ångström 
coefficient), Fine and Coarse 
mode amounts (AODF and 
AODC), Aerosol absorption 
(AAOD and SSA), particle 
shape, microphysical 
properties and aerosol height 

Lidars in LEO Narrow track Can be weeks 
Finely resolved vertical profiles, 
particle shape (non-sphericity 
from depolarization) 

Ground based 
spectrometers and 
radiometers 

Local 
Can be a few 
minutes 

Amount (AOD), size (Ångström 
exponent), Fine and Coarse 
mode amounts (AODF and 
AODC), Aerosol absorption 
(AAOD and SSA), particle 
shape, detailed microphysical 
properties 

Ground based lidars Local 
Can be a few 
minutes 

Finely resolved vertical profile, 
particle shape (non-sphericity 
from depolarization) 

Combination of Ground 
based radiometers and 
lidars 

Local 
Can be a few 
minutes 

In addition to all properties 
retrieved by the instruments 
separately, the finely resolved 
vertical profiles of fine and 
coarse aerosol modes, and fine 
and coarse aerosol SSA 
(absorption).  
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2.1. Multispectral Satellite Imagers 
 
Multispectral imagers with spectral channels in the visible, near IR, and IR provide valuable 

information on the horizontal distribution of the aerosol burden. Spatial resolutions on the order of a 
kilometer enable the detection of small-scale signatures of emission events and enhance the cloud-free 
data yield in broken cloud conditions. The synoptic view from space-borne imagers is key for 
complementing ground-based observations. Satellite observations are instrumental for evaluating the 
consistency of ground-based stations by capturing the gradients in concentrations in between the 
monitors.  

Various data products that can be derived from multispectral imagers are relevant to PM 
monitoring: AOD is a measure of the total column aerosol burden and equals the vertically integrated 
extinction. Usually, AOD is reported at one or more reference wavelengths in the mid-visible (e.g. 0.55 
μm). The Ångström Exponent (AE) over ocean, derived from the wavelength dependence of AOD, is 
related to aerosol particle size, particularly for mono-modal aerosol distributions. Although AOD 
algorithms for individual sensors (e.g., MODIS, VIIRS, MISR) can vary, the fundamental approach involves 
identifying clear-sky pixels from cloudy and snow/ice covered pixels and separating the radiance 
contribution from the surface and from aerosols using pre-computed look-up-tables (Hsu et al., 2013; 
Levy et al., 2015; Jackson et al., 2013; Limbacher and Kahn, 2017; Lyapustin et al., 2018). The AODs from 
a network of ground-based sun photometers (Aerosol Robotic Network, AERONET) provide ground truth 
to validate the satellite retrievals (Holben et al., 1998).  

Multispectral imagers are flown on Low Earth Orbiting satellites, which typically provide daily 
global coverage, and on geostationary meteorological satellites, which offer observations over part of 
the globe with a fast revisit time. One of the top priorities is to ensure that NRT observation data from 
meteorological imagers on geostationary satellites are optimally exploited and fed into air quality 
applications. 
 
RECOMMENDATION 1: Pursue the exploitation of the near-real time (NRT) information on Particulate 
Matter (PM) from meteorological imagers.  
 

2.2. Hyperspectral Imaging Spectrometers in LEO and GEO Orbits  
 
Hyperspectral imaging spectrometers are primarily built to capture the spectral absorption 

signatures of atmospheric trace gases. The product portfolio of such spectrometers often comprises 
aerosol precursors such as NO2 and SO2. Assimilating trace gas fields in atmospheric models can help to 
constrain particle production. AOD products can be derived from the measurements of spectrometers 
using the spectral windows without strong gas absorption features. AOD products from multispectral 
imagers are often preferred since the products typically have significantly higher spatial resolution 
compared to hyperspectral imagers. Nevertheless, spectrometers yield unique information on aerosol 
that is relevant to PM. Information on the vertical aerosol distribution can be extracted from the relative 
depth and spectral shape of strong absorption features of well mixed trace gases with a known 
abundance, such as the O2-O2 collision complex, and the O2-A and -B bands. The use of O2 absorption 
measurements to constrain cloud and aerosol profiles was first proposed by Yamamoto and Wark 
(1961). The physical basis is that O2 is uniformly distributed in the atmosphere with a known mixing 
ratio, and its spectrally-dependent absorption cross sections are reasonably well known (Drouin et al., 
2017). Since aerosols and clouds scatter light back to space, the depth of observed O2 absorption 
signatures provides information on their column optical depth and vertical structure (Xu et al., 2019, 
Park et al., 2016). In some algorithms, Aerosol layer height (ALH) products approximate the aerosol 
vertical distribution by one single homogeneous layer with a fixed vertical thickness, while in other 
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algorithms, it is assumed to quasi-Gaussian (Chen et al., 2021). ALH estimates thus obtained tend to be 
accurate for cases with medium to high optical depth and elevated layer heights. The product helps in 
characterizing events with pronounced emission plumes but is of limited use for characterizing near-
surface particle pollution with low optical thickness.  

A series of spectrometers originally designed to measure ozone (e.g. Total Ozone Mapping 
Spectrometer, TOMS), also capture aerosol related signatures in the UV. The UV aerosol index (UV AI) is 
derived from the spectral contrast in the UV and is sensitive to elevated absorbing particles. This index 
allows detection of aerosol even over clouds, for tracking plumes of desert dust, volcanic ash, and 
smoke, and for qualitative analyses (Herman et al., 1997; de Graaf et al., 2005). UV spectral reflectance 
measurements are also exploited to retrieve a combination of AOD, absorbing AOD, and single 
scattering albedo (Torres et al., 2007; Torres et al., 2020). A combination of UV and Visible spectral 
bands in the Earth Polychromatic Imaging Camera (EPIC) of DSCOVR satellite located in the first 
Lagrangian point (L1) allows for simultaneous retrieval of AOD and spectral aerosol absorption 
represented by an Ångström-type two-parameter model (Lyapustin et al., 2021). For strong smoke or 
dust plumes, the general magnitude and “spectral slope” of absorption helps to derive 
concentrations/mass fractions of the main absorbers, namely of black and brown carbon (BC/BrC) in 
biomass burning smoke and of hematite/goethite in mineral airborne dust (e.g., Go et al., 2022). The 
aerosol speciation retrieval relies on prior knowledge of the refractive index of mentioned species and 
assumed ALH. The algorithm was originally developed by Schuster et al. (2016) in application to 
AERONET and was prototyped by the GRASP team for POLDER/PARASOL data record (e.g., Li et al., 
2019). These UV products are relevant for air quality by the virtue of their capability to capture pollution 
events with pronounced plumes.  

The vertical distribution information from O2 absorption signatures and from UV radiances is not 
yet exploited in data assimilation schemes. For this purpose, forward operators (radiative transfer 
simulators) are needed that allow a fast prediction of observable spectral signatures for a given model 
state. The computational demands of radiative transfer calculations that account for multiple scattering 
at fine spectral sampling is challenging. Dedicated efforts are needed to develop fast forward operators. 
 
RECOMMENDATION 2: Pursue the use of aerosol height information from hyperspectral imagers for 
constraining surface PM. Pursue the development of related fast forward operators. 

 

2.3. Multi-Angle Polarimeters in LEO 
 
The multi-angle viewing capability of sensors like MISR have advanced the aerosol retrieval 

capability to parameters beyond AOD. The additional polarimetric capabilities of Multi-Angle 
Polarimeters (MAPs) further enhance satellite aerosol remote sensing. The first spaceborne MAP 
measurements were made with the Polarization and Directionality of the Earth’s Reflectance (POLDER) 
instrument on the ADEOS satellite launched in 1996. Since then, several other MAPs have been 
launched, e.g. a POLDER instrument on PARASOL launched in 2004 and the Directional Polarimeter 
Camera (DPM) on GaoFen-5 launched in 2018. Future MAPs include HARP2 and SPEXone of the 
Plankton, Aerosols, Clouds, and Ecosystems mission (PACE), the Multi-viewing, Multi-channel, Multi-
polarization Imager (3MI) on MetOp-SG, and a MAP instrument on the Copernicus mission CO2M. A 
review of polarimetric sensors and methodologies is given by Dubovik et al. (2019) and Hasekamp 
(2010). 

 Multi-angle polarimeter measurements contain typically twice the number of Degrees of 
Freedom of Signal (DFS) compared to observations from a single-view radiometer (Dubovik et al., 2019). 
This allows for the simultaneous retrieval of AOD and several aerosol parameters that are of key 
importance for air quality applications constraining the particle size distribution and the aerosol type. 
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However, the application of derived products for air quality services has been hampered by the 
complexity and computational demands of aerosol retrieval algorithms (Kokhanovsky et al., 2015). 
Complex retrieval schemes are needed to fully exploit the information content of the multi-angle 
polarimetric measurement data. Joint retrieval schemes for surface and aerosol characteristics are 
needed to obtain independent information on surface reflectivity and aerosol characteristics. Algorithms 
such as the Generalized Retrieval for Aerosol and Surface Properties (GRASP) by Dubovik et al. (2011, 
2021) and the Netherlands Institute for Space Research (SRON) algorithm by Hasekamp et al. (2011) 
were developed for retrieving extensive aerosol properties from MAPs.  MAP data products typically 
contain the spectral AOD, aerosol absorption optical depth (AAOD) and single scattering albedo (SSA) as 
well as AE, spectral fine mode AOD (AODF) and coarse mode AOD (AODC). In addition, the recent 
POLDER-3/GRASP aerosol product generated using “component” approach (Li et al., 2019) provides 
some direct inside about aerosol type. Specifically, this approach retrieves the size resolved fractions of 
aerosol components representing the different composition species, such as black carbon, brown 
carbon, fine/coarse mode non-absorbing soluble and insoluble, coarse mode absorbing and aerosol 
water. The retrieved fractions drive the aerosol spectral index of refraction in modeling of atmospheric 
radiances. The illustrations of the climatology of aerosol component retrieval from POLDER-3 over the 
Asia region by the GRASP/Component algorithm can be found in studies by Li et al., (2020a, 2020b) and 
Dubovik et al. (2021).  

Comparisons show that MAP AOD products from POLDER-3/GRASP are very coherent with 
MODIS data and exhibit several important advancements. For example, POLDER-3/GRASP retrievals 
provide more reliable detailed aerosol parameters, such as AE, AODF and AODC especially over land, 
and parameters that are generally not available from MODIS-like instruments, such as SSA and AAOD. 
The validation of POLDER-3/GRASP products by Chen et al. (2020) showed a robust correlation of the 
retrieved SSA and AAOD spectral values with AERONET (440–1,020 nm), and correlations increased for 
the retrievals corresponding to events with higher AOD. For AAOD retrievals overall, the bias did not 
exceed 0.01, suggesting that POLDER-3/GRASP products can be used for making global estimations of 
AAOD at such a level of uncertainty. Schutgens et al. (2021) have evaluated both POLDER-3/GRASP and 
POLDER-3/SRON Level3 1-degree SSA against AERONET and compared them to other satellite SSA 
products. These studies recognized POLDER-3 SSA products the most reliable and most extensive data 
SSA sets.  

In general, POLDER-like MAP observations have high potential for helping to improve extensive 
monitoring of air quality parameters that are vital for evaluating the dynamics of the environment. For 
example, Wei et al. (2020) demonstrated the higher capacity of POLDER products compared to single-
view MODIS data for characterization of PM2.5 from space, and Wei et al. (2021) presented a 
methodology of using POLDER/GRASP products for deriving PM10, which is generally even more difficult 
to obtain from remote sensing than PM2.5. Lopatin et al. (2021, AGU abstract) demonstrated high 
potential to derive PM2.5 from MAP observations only using the sensitivity of MAP observations to ALH.  

Some recent studies used polarized measurements to retrieve aerosol properties and fine mode 
fraction of AOD over land (Fu et al., 2018; Zhang et al., 2021). At present, it is a challenge to offer the 
processing capability that can keep pace with the output of these instruments in an operational 
environment. The validation of retrieved aerosol parameters other than AOD is challenging since 
accurate and representative reference data are scarce: reference data from ground-based in-situ 
measurements may capture many parameters accurately but are only partially representative for air 
masses observed by satellites. Ground-based sun photometers (i.e., AERONET) provide direct 
observations of AOD but other aerosol parameters are observed indirectly with substantial uncertainties 
for AODs below ~0.4 (Remer et al., 2019).  

The wealth of aerosol information from MAP products is not yet fully exploited in PM estimation 
schemes. Data assimilation of these products relies on forward operators that allow a fast prediction of 
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observable signals for a given model state. The computational demands of radiative transfer calculations 
that account for multiple scattering is challenging. Dedicated efforts are needed to develop such fast 
forward operators. 
 
RECOMMENDATION 3: Pursue the full exploitation of information from multi-angle and multi-angle 
polarimetric imagers for constraining surface PM. 
 

2.4. Space-Borne Lidar 
 
Lidar measurements have the unique capability of finely resolving the vertical aerosol 

distribution. The first space-borne lidar was the Geoscience Laser Altimeter System (GLAS) on ICESat, 
launched in 2003. The Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP; Winker et al., 2009, 
2010) provides vertical profile data with ~30 m resolution. Return signals in the three channels (532 nm 
parallel, 532 nm perpendicular, and 1064 nm) of CALIOP are used to derive profiles of attenuated 
backscatter, perpendicular backscatter, depolarization ratio, and color ratio between 532 nm and 1064 
nm. These profiles allow the identification and characterization of aerosol layers in terms of optical 
depth and aerosol type (Kim et al., 2018). The strong potential of lidar measurements at three 
wavelengths for retrieving aerosol microphysical properties has been shown for an airborne High 
Spectral Resolution Lidar (HSRL; McLean et al., 2021). 

For air quality applications, aerosol profiling within the planetary boundary layer (PBL) is 
necessary. Even with advanced space-borne lidar systems, it is very challenging to resolve aerosol 
vertical profiles in the PBL because resolving the aerosol profile at sub-kilometer scales requires 
accurate knowledge of aerosol optical properties and composition and correct characterization of 
surface reflection. However, knowledge of the boundary layer height, which can be identified in lidar 
profile data more reliably, is already very useful to constrain the vertical aerosol distribution in models, 
especially when assimilating AOD retrievals.  

The limited spatial coverage of lidar observations limits their direct use in air quality 
applications. Nevertheless, several indirect benefits of lidars in this context are important. Lidar data are 
very helpful in evaluating and improving models in their capability of describing aerosol vertical profiles 
and constraining aerosol type. Lidar data are a unique source of reference data for validating and 
improving effective ALH retrievals, such as using O2 A-band absorption measurements from instruments 
such as the TROPOspheric Monitoring Instrument (TROPOMI) (de Graaf, personal communication; 
Nanda et al., 2020), the aerosol plume injection height product from MISR, or the smoke plume height 
product from MODIS MAIAC (Ciren and Kondragunta, 2014; Lyapustin et al., 2020; Nelson et al., 2013). 
The MISR-derived global climatologies of aerosol plume heights and aerosol types have also contributed 
to the advancement of the knowledge of aerosol source regions such as biomass burning, dust storms, 
and urban/industrial aerosols (Gonzalez-Alonso et al., 2019; Kahn et al., 2008; Val Martin et al., 2018). 

 

2.5. Aerosol Measurements from Ground 
 

In this section, the ground-based sensor types are discussed that are most important for 
validation and improvement of aerosol and PM products derived from satellite observations and from 
models. This includes in-situ PM sensors, sun photometers, lidars, and ceilometers. A detailed 
description of the individual instruments and networks are provided in Appendix A.6.  
 

2.5.1. Ground-Based in-situ PM Sensors  
 
Ground-based in-situ PM sensors are the main source of reference data for the validation and 
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improvement of PM data products from any kind of air quality monitoring system. PM products that are 
generated by exploiting column-integrated aerosol characteristics from satellite observations are very 
sensitive to the correct treatment of the aerosol vertical distribution. Ground-based in-situ PM 
measurements are vital to verify and improve this critical step in particular, and the overall success of a 
satellite-informed PM estimation scheme in general. However, ground-based in-situ PM measurements 
remain sparse in many populated regions (Martin et al., 2019).  

Ground-based sensors measuring near-surface PM concentrations in situ are unique in their 
capability to characterize local PM pollution levels. Many sensors of this kind provide size information by 
reporting PM2.5 and PM10 concentrations, while some even report PM1 data. Some in-situ systems also 
provide information on the chemical composition of the particles. Operational networks of such sensors 
are run by national environmental agencies for monitoring air quality and the compliance with national 
air quality standards. Measurement data of such networks are a key ingredient to PM pollution 
information services as discussed in Section 4. Low-cost in-situ sensors are publicly available, but not all 
sensors are well calibrated. The low-cost sensor data in the US can be corrected using algorithms 
developed by US EPA (Holder et al., 2020) but the data from Asia, Europe, and other parts of the world 
are less understood and methodologies to quantify their accuracy and any corrections needed must be 
developed. Networks of such sensors are operated by public and scientific institutes and players in the 
private sector.  
 

2.5.2. Ground-Based AOD (AERONET) 
 

AERONET, the multi-wavelength ground-based sun photometer network of AOD measurements, 
started in the early 1990s prior to the launch of Terra as a “truth” dataset for space-borne AOD 
retrievals (Holben et al., 1998). AERONET grew from a few stations in the early stages to hundreds (600 
as of 2018) of stations across the globe, covering a variety of geographical regions from rural to urban 
areas, including current and emerging mega cities (https://aeronet.gsfc.nasa.gov/). AERONET is a 
federated program wherein instrument scientists agree to calibrate their sun photometers according to 
guidelines set forth by NASA and to contribute the data freely to users. An AERONET sun photometer 
tracks the sun and measures direct solar irradiance and directional sky radiance at different 
wavelengths. The attenuation of solar irradiance is proportional to the aerosol amount present in the 
atmosphere, derived as AOD. Observations at multiple wavelengths (UV to visible) provide the spectral 
dependence of AOD, which is a proxy for particle size. The inversion of direct sky radiance 
measurements provides information on refractive index, volume size distribution, single scattering 
albedo, and particle phase function. The aerosol optical and physical properties are extremely important 
because they not only provide regional aerosol climatologies but they also form the basis for 
categorizing aerosols into different types (e.g., dust highly absorbing, smoke low absorbing) that are 
used by satellite aerosol retrieval algorithms. The AOD measured by AERONET sun photometers is never 
used in any retrieval algorithm other than to verify the retrievals. Most satellite AOD retrieval algorithms 
use the global AERONET sun photometers to demonstrate algorithm performance metrics. Further 
description of AERONET is provided in Appendix A6.2.  
 

2.5.3. Ceilometers and Lidars 
 

Ceilometers and lidars are ground-based active laser-based instruments that provide unique 
information on the vertical profile of atmospheric constituents. Both systems rely on the time delay and 
the amplitude of backscattered return signals. The main products relevant to aerosol are extinction 
coefficient profiles and boundary layer height. Some advanced lidar products also provide information 
on the aerosol type. 

https://aeronet.gsfc.nasa.gov/
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The distinguishing characteristics of ceilometers that set them apart from lidars historically 
include low cost, robust, single near IR wavelength, lower signal to noise (especially for clear air), and 
commercially available. In addition, ceilometers deployed in most operational networks are operated in 
black box mode, where only limited variables are provided, such as cloud base and PBL height, but the 
signal profile data are not utilized and/or archived. Ceilometer networks have produced dense coverage 
spatially, but with a limited data set. In contrast, distinguishing lidar characteristics historically include 
higher cost, less robust, addition of UV and/or visible wavelengths, polarized observations to determine 
particle shape, higher signal to noise, and availability of lidar signals and more retrieved data variables. A 
description of lidar and ceilometer networks is provided in Appendix A6.3. 

Ground-based data sets supporting scientific studies and developments aiming at PM estimation 
would strongly benefit from co-located lidar and ceilometer data. Therefore, campaign supersites and 
long-term measurement sites with in-situ PM and ground based aerosol remote sensing sensors should 
be complemented with ground-based lidars and ceilometers.  
 
 

3. Satellite Observations 
 

In this section, capabilities of satellite products are discussed, and recommendations are made 
in order to enhance the satellite products to better meet the specific needs of PM estimation. The 
aerosol retrieval challenge and current approaches to meeting it are introduced in Section 3.1. 
Strategies to establish and maintain data quality and consistency of AOD products are discussed in 
Section 3.2. Section 3.3 is dedicated to merged satellite AOD products. Satellite products capturing the 
aerosol vertical distribution are discussed in Section 3.4. The potential of Earth radiance products is 
discussed in Section 3.6. 

 

3.1. The Retrieval Challenge 
 
Particulate pollution is governed by many parameters including the near-surface particle 

number density, the size distribution, and the chemical composition. The information contained in 
satellite observations is sufficient to retrieve only a subset of these parameters, even for the most 
powerful sensors or combination of sensors. Aerosol algorithms must solve an under-constrained 
problem since the number of unknowns is far larger than the degrees of freedom of the measured 
signal. Also, the available aerosol information varies depending on the observation conditions (e.g., sun-
satellite geometry, surface reflectance, cloud conditions, aerosol characteristics). Aerosol retrieval 
remains a challenge and is subject to continuous research and development. PM estimation taking 
aerosol products from satellites relies on these developments. 

Multispectral imager observations in the visible wavelengths are weakly sensitive to vertical 
distribution and microphysical parameters (particle shape, real and imaginary parts of the refractive 
index, hygroscopic and mixing state, size distribution, etc.). The AOD estimates derived from a 
multispectral imager depend on the assumptions made on these parameters and other unknowns. 
Aerosol retrieval schemes necessarily rely on prior information about these parameters or other types 
of regularization. Often a discrete set of aerosol models is used, and the aerosol model selection is 
sometimes based on the season and geo-location. Aerosol products report the assumed aerosol type 
and the set of assumptions made in the retrieval. When AOD data are used for PM applications, 
assumptions on the aerosol physical/optical properties are made to convert modelled aerosol loads to 
observables such as AOD. Potential inconsistencies in these assumptions and approaches that aim at 
avoiding such inconsistencies are discussed in Section 4. 
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One of the challenges of aerosol retrievals from multispectral imagers is the handling of the 
surface reflectance. Single-view passive observations of this type do not provide information to separate 
the surface signal from aerosol signals in the top-of-atmosphere reflectances. Often, aerosol parameters 
are retrieved by relying on prior information on the surface reflectance.  

Multi-angle passive imagers such as MISR allow separation of surface reflectance from 
atmospheric contributions, making self-consistent surface-aerosol retrievals possible in many situations 
(e.g. Martonchik et al., 2009). Geostationary sensors view the same target frequently with varying solar 
illumination, which is exploited in joint surface and aerosol retrieval schemes (Govaerts et al. 2010; 
Wagner et al., 2010; Dubovik et el., 2014). Such schemes work on multi-angle and multispectral data-
cubes obtained by temporally aggregating reflectance measurements. Independent information on 
surface and aerosol is extracted from the data-cubes, also exploiting differences in the temporal and 
spatial correlation lengths between aerosol and surface variabilities. The surface characteristics 
obtained by such joint retrieval schemes may be more representative of the actual observing conditions 
than climatological surface reflectance data, and thus, enhance the quality of the aerosol products.  

This concept has been exploited by algorithms such as the Multi-angle implementation of 
Atmospheric Correction (MAIAC) to simultaneously derive surface reflectance and AOD (Lyapustin et al., 
2011) using Aqua and Terra MODIS observations. The operational version of MODIS MAIAC algorithm 
uses the slow rate of change of surface properties in time to characterize the surface spectral ratios and 
derive AOD, surface reflectance (BRF), and parameters of the BRDF model which support the follow-on 
aerosol retrievals (Lyapustin et al., 2018).  

Prior to MAIAC algorithm development, the NOAA GOES Aerosol and Smoke Product (GASP) 
algorithm retrieved surface reflectance and aerosol optical depth using single channel reflectance 
(Knapp, 2002). The GASP algorithm was subsequently adapted by Kim et al (2016) for Geostationary 
Ocean Color Imager (GOCI) AOD retrievals. Such concepts should be considered when optimizing the 
exploitation of geostationary meteorological imager observations for aerosol and PM pollution 
monitoring.  

Finally, the Generalised Retrieval of Atmosphere and Surface Properties (GRASP) is probably one 
of the most elaborated recent algorithms exploiting the concept of simultaneous surface and aerosol 
retrieval. GRASP is a versatile algorithm that is a result of multi-year methodological efforts by Dubovik 
et al. (2011, 2014, 2021). GRASP implements the numerical inversion as a statistically optimized fitting of 
observations under multiple a priori constraints (Dubovik et al. 2021) and includes several advanced 
retrieval concepts. For example, it uses the multi-pixel retrieval approach when simultaneous optimized 
inversion is implemented for a large group of independent observations (see Dubovik et al., 2011). This 
inversion scheme improves retrieval consistency by using known limitations on spatial and/or temporal 
variability of retrieved parameters. For example, in satellite retrieval, the horizontal pixel-to-pixel 
variations of aerosol and temporal (e.g. day-to-day for polar and hourly for geostationary observations) 
variations of surface reflectance are enforced to be smooth by an additional set of a priori constraints. 
GRASP has been used for generating extended retrieval products from several satellites including 
POLDER-1, -2 and -3; MERIS/ENVISAT; OLCI/Sentinel-3; TROPOMI/Sentinel-5P; and Himawari; it will be 
used for operational processing of 3MI/EPS-SG, MAP/CO2M, and Sentinel-4 (Dubovik et al., 2021).  

At high AOD, it might be difficult to obtain an accurate estimate of AOD from remote sensing, 
but with an adequate radiative transfer code, retrieving particle properties in smoke and volcanic 
plumes with AOD ≥ 4. The practical upper limit on total-column AOD retrieval is about 7 at a given 
wavelength, as beyond that, it is no longer possible to see through the column to the surface. However, 
in these circumstances, it can still be possible to retrieve particle microphysical properties. Most satellite 
retrieval algorithms make different assumptions about the surface for land and ocean, and this often 
leads to significantly different algorithms overall, including the choice of spectral bands, the approach 
for filtering radiances, cloud screening, etc. This inevitably leads to discontinuities, between land and 
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water. Lower bounds on AOD and particle property retrievals depend in part on surface properties. 
Generally, dark, uniform surfaces allow for higher-confidence aerosol retrievals. As a practical matter, a 
lower AOD bound on AOD retrieval is around 0.02 under ideal conditions, and good-quality particle 
property retrievals, e.g., from MISR, require mid-visible AOD around 0.15 to 0.2 (Kahn and Gaitley, 
2015). Over urban areas, where the surface tends to be complex and fairly bright, the effective lower 
bounds on aerosol retrieval are usually higher. 
 

3.2. Consistency of Aerosol Optical Depth Products 
 

Given the availability of many different AOD products from many different sensors and 
algorithms, it is prudent to derive a consistent merged AOD product for certain applications. The need to 
merge AOD products from different sensors/algorithms arises from the need to optimize information 
content. For example, AOD products from the VIIRS instruments on the Suomi-National Polar-orbiting 
Partnership (SNPP) and NOAA-20 satellites are derived using the same algorithm, but the spatial 
coverage of the AOD products is different due to the 50-minute time offset in the equator crossing time 
of the satellites. Due to the time difference, cloud cover and sun glint are different for the two satellites. 
Due to these differences, when the two AOD products are merged, they have more spatial coverage 
compared to the corresponding products from each individual satellite, as shown in Figure 2.  

Merging of AOD products from different sensors is also conducted to study long-term trends in 
AOD, and gaps in certain satellite products have to be bridged. As the MODIS AOD era draws to an end 
in 2023 with planned orbit lowering maneuvers of NASA, and as the scientific community transitions to 
using VIIRS AOD products, the merging of MODIS and VIIRS AOD products, when they are both available, 
is important to adjust for their biases caused by instrument calibration/algorithm differences. For PM2.5 
applications, temporal and spatial coverage is of utmost importance, as filling the gaps between ground 
monitors using satellite AOD is the goal. Given this objective, merging different satellite AOD products to 
improve spatial and temporal coverage is practical.  
 
RECOMMENDATION 4: Continue efforts to establish, monitor, and enhance the consistency of AOD 
and other aerosol products relevant to PM from space-borne sensors. Continue and strengthen 
related efforts made by the AEROSAT community. 
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Figure 2. High quality NOAA VIIRS AOD at 550 nm for 3 January 2020 from NOAA-20 (A), SNPP (B), and merged 
NOAA-20 and SNPP (C). 

 
 

Documenting the diversity in multi-satellite AOD products at both regional and global scales is a 
key step in this direction. Biases in the observations and departure between observations can 
significantly affect the data assimilation outputs (Zhang and Reid, 2005), and the spatial and temporal 
structure of the systematic differences between satellite products needs to be properly understood and 
quantified in order to account for them in the assimilation process (Dee et al., 2005). Schutgens et al. 
(2020) reported results of an extensive analysis of nine different algorithms (14 AOD products) using 

daily average AOD aggregated to 1 resolution. This study shows a difference in regional biases, which 
tend to cancel out in the merged products (e.g., Sogacheva et al., 2020), and different random error 
associated with the quality of cloud screening and measurement noise, including differences from the 
same algorithm but different sensors (e.g., MODIS on Terra and Aqua). The AeroSat initiative 
coordinates scientific activities on satellite aerosol products, including intercomparisons of products, 
and aims to make more consistent definitions, tools, and formats used. Continuing these activities is 
recommended to monitor the consistency of existing satellite aerosol products and to pursue making 
them more consistent. 

 

3.3. Merged AOD Products 
 
Despite differences in information content, sampling, calibration, cloud masking, and 

algorithmic assumptions, merged products can be robust and outperform products from individual 
sensors. Merged products benefit from complementary spatial-temporal sampling of the individual 
products and allow for creation of long-term data records covering the lifetimes of multiple sensors. The 
quality of a merged data product is indicative for the consistency of the ingredients needed for 
combined use in a data assimilation scheme. Examples are given for merged products from multiple LEO 
sensors (Section 3.3.1), multiple GEO sensors (Section 3.3.2), the combination of LEO and GEO sensors 
(Section 3.3.3), and satellites and simulations (Section 3.3.4). 
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3.3.1. Merging Multiple LEO Products 
 
The AeroSat community, comprising aerosol algorithm developers and product users, decided 

during their annual meeting in 2019 that it is in the best interests of product users to develop and 
document best practices for merging various satellite products. The AeroSat community is interested in 
using satellite data for climate applications and long-term trend analysis in different parts of the world; 
thus, the procedures developed by this group are primarily Level 3 gridded monthly mean AOD datasets, 
typically at 1o x 1o spatial resolution. Merging Level 3 AOD data helps with building AOD datasets that 
are spatially and temporally consistent.  

Though the purpose is different, some of the PM2.5 applications that are of interest to the air 
quality community are also related to long-term changes in pollution and its impact on human health. 
Thus, it is important to summarize the methods used to create merged datasets by the AeroSat 
community. Sagacheva et al. (2020) collected multiple satellite sensors including products from different 
algorithms for the same sensor from 1995 to 2017.  

For the creation of the merged dataset, Sagacheva et al. (2020) took two different approaches. 
In one approach, they used comparisons of each individual satellite dataset to AERONET AOD data to 
derive metrics such as correlation coefficient, bias, root mean square error, and percentage of data 
points within the expected error. Each of the 10 different satellite AOD products were assigned a rank 
for these categories and an overall weight was defined based on the sum of all individual ranks for each 
product. The merged AOD was then derived as weighted mean value of all the available datasets. In 
another approach, each satellite dataset was adjusted for offset with MODIS AOD and the median of all 
offset-adjusted AOD datasets was selected to generate the merged dataset. 

The merged product appears to be overall better than the individual products. Better agreement 
with reference measurements from AERONET data and a good robustness were reported by Sagacheva 
et al. (2020). One of the challenges that remains is finding a way to report the uncertainty of the 
parameters in the combined product.  

 
3.3.2.  Merging Multiple GEO Products 
 
Lim et al. (2021) developed an ensemble retrieval approach using the Yonsei Aerosol Retrieval 

(YAER) algorithm to derive merged AOD. In this approach, two different algorithms are run on two 
different satellites to generate four AOD products, and then a weighted merged product is generated. 
The two instruments are the Advanced Himawari Imager (AHI) and GOCI; AHI is used as a proxy for the 
Advanced Meteorological Imager (AMI) as the AOD product from AMI is not available. The spatial and 
spectral characteristics of the instruments are different but the data are mapped to a common 
resolution of 6 km x 6 km. The difference between the two algorithms is in the way surface reflectance is 
derived. One algorithm that uses the minimum reflectance method is based on the algorithm approach, 
originally developed by NOAA for its legacy GOES AOD product, GASP (Knapp et al., 2007). The other 
algorithm estimates surface reflectance from pre-determined spectral surface reflectance ratios 

between SWIR and visible wavelengths. For GOCI, because of the absence of a 2.25 m channel, the 1.6 

m channel is used instead. Due to this difference, the GOCI AOD product from the algorithm using 

estimated surface reflectance from the 1.6 m channel can have errors associated with snow covered 
pixels. 

Each individual AOD product was compared to AERONET according to certain matchup criteria 
to derive root mean square errors. The authors found that the retrieval errors have a Gaussian 
distribution and discarded the outliers using a 2-sigma standard deviation threshold. The Gaussian 
center difference and root mean square errors for each product were used to derive the bias corrections 
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and weights for the merged AOD product, respectively. Comparisons of the merged AOD product to 
AERONET AOD data show that the fused retrievals are more accurate than any given individual AOD 
product. 
 

3.3.3. Merging GEO-LEO AOD Products 
 

3.3.3.1. NOAA Method 
 

NOAA currently generates AOD products from a suite of satellite sensors on geostationary and 
polar-orbiting satellites. These include GOES-16 Advanced Baseline Imager (ABI), GOES-17 ABI, SNPP 
VIIRS, and NOAA-20 VIIRS. NOAA has developed the Enterprise Processing System (EPS) algorithm that 
retrieves AOD over both dark vegetated as well as bright surfaces; it is currently run on both VIIRS 
instruments and soon will be implemented for the ABIs. The outputs of the EPS algorithm include “high”, 
“medium”, and “low” quality AOD; the “high” and “medium” quality AODs (termed “top 2 qualities”) are 
recommended for air quality applications. The SNPP VIIRS and NOAA-20 VIIRS equator crossing times are 
different by ~50 minutes, and they can at times observe the same scene from different viewing 
geometry. Analysis of several years of AOD data from the two VIIRS sensors showed that they are 
consistent at a statistically significant level and can therefore be averaged without any adjustments to 
individual AODs.  

When the ABI AOD data are available at the same time as VIIRS for a given scene, the AOD data 
can be merged using a specific weighting process: equal weights are applied among the GEO or LEO 
products, weights of 0.4 and 0.6 are adopted for the GEO and LEO AOD, respectively, when LEO and GEO 
data are combined. These constant weight values are derived from the overall statistics of the validation 
of the GEO/LEO retrievals against the ground AERONET measurements. The GEO/LEO sensors include 
GOES-16 ABI, GOES-17 ABI, SNPP VIIRS, and NOAA-20 VIIRS. The spatial and temporal resolutions can be 
specified as inputs to generate the gridded GEO/LEO averaged AOD at 550 nm for the high, medium and 
low-quality data individually. Figure 3 shows the hourly (17-18 UTC) merged GEO/LEO high-quality AOD 
on 1 December 2020. A more sophisticated merging scheme, with weights based on surface 
characteristics and sensor scan angle, is being considered to improve the consistency of the GEO/LEO 
merged AOD product. The refresh rate and spatial resolution of the merged AOD product vary 
depending on the US National Weather Service (NWS) requirements. The merged AOD product is 
currently available on a 1-hour temporal scale for regional model applications and 3-hour temporal scale 
for global model applications. Spatial resolutions for the global model and regional model are 0.25o and 
0.03o respectively. In addition to merged AOD, the output also includes the number of pixels used for 
grid averaging, minimum and maximum AOD, and the standard deviation.  
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Figure 3. Merged high-quality NOAA GEO/LEO AOD at 550 nm for 17-18 UTC on 1 December 2020. 
 
 

3.3.3.2. NASA Method 
 
NASA applied its Dark Target (DT) AOD algorithm (see Section A3.1) to multiple geostationary 

and polar-orbiting satellite sensors globally to retrieve merged AOD that is quality controlled and 
composited for 30-minute temporal resolution and 0.25° x 0.25° spatial resolution. The DT algorithm 
currently runs on six sensors, including GOES-16 and -17 ABI, Himawari-8 AHI, Terra and Aqua MODIS, 
and SNPP VIIRS. Due to minor differences in available spectral channels and spatiotemporal resolutions, 
specific adjustments to the DT algorithm are made for each sensor (Levy et al., 2013; Gupta et al., 2018; 
Sawyer et al., 2020). In the core algorithm, assumptions on aerosols models, surface reflectance, and 
other decision-making remain unchanged.  

The retrieved AODs from each sensor are first aggregated in a 30-minute interval and then 
averaged over a 0.25° x 0.25° latitude-longitude grid for the global region. In addition to the simple 
arithmetic mean, the median, standard deviation, minimum, maximum, and the number of pixels for 
each gird and time stamps are saved. The Level 2 AOD data are generated at 10 km nadir resolution 
from the ABIs, MODISs, and AHI, whereas VIIRS data have 6 km resolution. The native pixel size for each 
individual sensor grows from nadir to edge of the swath as a function of viewing geometry of the sensor. 
This changing pixel size, specifically at the edge, can create some empty grid cells in cases where pixel 
size becomes larger than the 0.25° grid size. To avoid empty grids in the merged product, grid filling is 
applied while considering viewing geometry following the method developed for MODIS sensors (Gupta 
et al., 2020). The AOD merging is done separately for data corresponding to retrievals with best quality 
flags and all quality flags.  

The output file includes individual sensor AODs as well as merged AOD. In addition to AODs at 
550 nm, future work will include AODs at blue and red channels for land and ocean and near-infrared 
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channel only over the ocean. Also, solar geometry, individual sensor geometry, aerosol-cloud fractions, 
and a land-ocean flag will be made available in each file. Merged AOD data are produced every 30 
minutes for the entire globe. Figure 4 is an example of AOD from the individual sensors and the merged 
data sets for 15 March 2020. To date, limited variable outputs for one year have been processed, and 
the merged product has been tested for consistency and cross-validated against ground measurements 
by AERONET. More research on refining the merging algorithm is underway and providing AERONET 
AODs for each grid is under consideration.  

 
 
 

 
Figure 4. Merged NASA GEO/LEO AOD at 550 nm for 15 March 2020. 

 
 
 

3.3.3.3. JMA Method 
 
JMA is taking advantage of the frequent aerosol observations of AHI temporally and the spatially 

high resolution (250 m to 1 km) SGLI aerosol absorption and other related parameters to improve 
monitoring. Effective synthesis of its geostationary and polar-orbiting observations including UV 
observations and vertical profiles from EarthCARE is ongoing in close collaboration with the model 
assimilation research activities within the agency (Yumimoto et al., 2018: Kikuchi et al., 2018; Yoshida et 
al., 2021). JMA’s satellite aerosol products and outputs from MASINGAR are open to the public through 
the JAXA G-portal (https://gportal.jaxa.jp/gpr/), the Himawari Monitor, and the P-Tree system 
(https://www.eorc.jaxa.jp/ptree). 
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3.3.4.  Merging AOD from Satellites and Simulations 
 
The added value of merging multiple AOD products with models for an improved representation 

of surface PM2.5 was first framed by van Donkelaar et al. (2010) during their derivation of global PM2.5 
estimates. The algorithm to combine AOD information from satellites and simulations has significantly 
advanced over the past decade with a recent summary by Hammer et al. (2020) and further 
developments by van Donkelaar et al. (2021). The first step is the common calibration of the separate 
AOD sources. Each source is translated onto multiple common grids of variable resolution. For a 
consistent definition of uncertainty, each AOD source is compared with AERONET AOD.  

Satellite retrieved AOD and simulated AOD have different sources of errors, therefore their 
uncertainties need to be accounted for differently. For cloud-free and snow-free daytime scenes, one of 
the main sources of uncertainty associated with satellite retrieved AOD is the surface treatment used in 
the retrieval. Therefore, one of the techniques used is to sample the daily satellite AOD retrievals to 
within 0.25o of each AERONET site and bin according to the Normalized Difference Vegetation Index 
(NDVI) which represents seasonally based changes in vegetation, as well as simulated aerosol 
composition. Local calibrations are calculated at each AERONET site as the median slope and offset from 
reduced major axis linear regression of retrieved AOD with the AERONET values. The local calibrations 
are then expanded globally by calculating each pixel as the weighted average of all AERONET site-
specific local calibrations, using inverse squared distance and the inverse of the Land Cover Similarity 
(LCS) defined by the MODIS land cover product. The LCS allows similar mixtures of land cover to be 
weighted more strongly. 

The residual uncertainty between the calibrated and observed AOD at each AERONET site is 
then calculated as the normalized root mean square difference (NRMSD). Local NRMSD values are 
globally extended using inverse squared distance and LCS, following the approach used for the local 
calibration factors. 

For the simulated AOD, to account for errors due to species-specific emissions and assumed 
aerosol microphysical properties, the relative uncertainty is calculated by applying the simulated 
fractional aerosol composition to each daily AERONET observation following van Donkelaar et al. (2013, 
2021). The local calibration factors are calculated as the absolute error of each species at each station as 
a function of magnitude. The local calibration factors are then extended globally as a function of the 
composition, proximity, temporal correlation, elevation, and observational dates of each AERONET site 
to each global pixel. The residual uncertainty is calculated as the component-specific NRMSD, and is 
similarly extended globally.  

The daily AOD values are used to calculate monthly mean values. Missing AOD and PM2.5 values 
within areas of more than 50% coverage are approximated using the interpolated ratio with the same 
data source during other years, or if necessary the interpolated ratio with simulated values during the 
same period. Monthly AOD values from all sources are combined using a weighted average, weighted by 
the product of the inverse residual AOD NRMSD, the inverse absolute percent difference between 
calibrated and uncalibrated AOD and the local data density. 

As a result of a consistent uncertainty definition, AOD from multiple satellite instruments 
(MODIS, MISR, SeaWiFS) and/or retrievals (Dark Target, Deep Blue, MAIAC) can be combined with 
simulated AOD such that each AOD source is most heavily relied upon where it is most effective. The 
relative weightings of satellite-based sources inherently follow the design constraints of the retrievals 
themselves. The added value of including simulated AOD is particularly evident at more northern 
latitudes, where seasonal snow cover inhibits the use of retrievals from passive satellite instruments. 
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3.4. Aerosol Vertical Distribution 
 
The vertical distribution of aerosols is key to estimating surface PM2.5 from total-column AOD; it 

is also important in the retrieval of trace gases such as NO2 from satellites. If the aerosol profile is well 
resolved, then the aerosol amount confined to a well-mixed planetary boundary layer (AODPBL) can be 
used to estimate surface PM2.5. Although they cannot provide aerosol vertical distribution information 
with the same level of accuracy as lidar, passive remote sensing techniques can retrieve effective ALH 
with much more (and often nearly global) spatial coverage and higher temporal resolution. Indeed, as 
summarized in the literature (Xu et al., 2018), a growing number of techniques have been developed to 
retrieve ALH from space, including: (a) a limb/occultation method, which is best for characterizing the 
aerosols in the upper troposphere and stratosphere (such as from OMPS and SAGE); (b) a stereo 
photogrammetry method based on multi-angle observations (such as from MISR); (c) a UV and deep-
blue method that either uses or does not use polarization (such as those applied to OMI and POLDER); 
(d) an infrared method, which is best for retrieving dust layer height over ocean (and to some degree, 
smoke layer height near the fire source region, (Lyapustin et al., 2020); and (e) oxygen absorption 
spectroscopy such as using the O2 A-band from LEO instruments including POLDER and MERIS 
(Dubuisson et al., 2009) and TROPOMI (Wu et al., 2008; Nanda et al., 2020), SCIAMACHY (Kokhanovsky 
and Rozanov 2010; Sanghavi et al., 2012), GOME/GOME-2 (Sanders et al., 2015), OCO-2 (Zeng et al., 
2020), OMI (Chimot et al., 2017; Park et al., 2016), and ground-based observations (Zeng et al. 2018), as 
well using the O2-A and -B bands from DSCOVR EPIC (Xu et al., 2017; Xu et al., 2019), and the O2-O2 (O4) 
absorption bands from GEMS (Park et al., 2016). The references here are not meant to be exhaustive; 
for details please see a review by (Xu et al., 2018). 

ALH is a general term used here to describe the aerosol vertical distribution information 
retrieved from the passive sensing techniques. The meaning of ALH indeed depends on the 
measurement technique and algorithm used. Since aerosol distribution is sometimes continuous in the 
vertical dimension, though aerosol transported above the PBL often accumulates in relatively thin (<~1 
km) layers of relative stability in the free troposphere (Kahn et al., 2007; Val Martin et al., 2010). As 
such, defining a layer of aerosol above the PBL can sometimes be subjective. Nevertheless, in the 
literature, several specific terminologies regarding ALH have been used, including the aerosol optical 
centroid height (AOCH), the aerosol stereo height, aerosol plume height, and aerosol effective height. 
AOCH refers to the altitude at which the aerosol extinction profile peaks (Xu et al., 2017). Aerosol stereo 
height is often referred as the aerosol plume height or the aerosol plume top, although its altitude 
corresponds to the layer of maximum spatial contrast in multi-angle imagery, and it can indeed be 
somewhere below the thinnest aerosol at the top of the plume. Retrieval of AOCH however does not 
have this requirement. The definition of aerosol effective height varies by different algorithm and 
depends on how the shape of the aerosol vertical profile is defined in the algorithm, but often it is 
defined as the altitude that provides the best fit to the satellite measurements that contain the aerosol 
layer height information.  

To date, only TROPOMI provides ALH data operationally and globally, and to some degree, the 
MODIS MAIAC thermal algorithm retrieves smoke layer height at the fire source region. For sensors like 
MISR, the best-quality aerosol plume heights require running an interactive computer program; the 
MISR Interactive eXplorer (MINX) technique has already been applied to tens of thousands of smoke, 
dust, and volcanic plumes. The recently launched GEMS instrument retrieves ALH using O2-O2 
absorption. The first comparison of TROPOMI ALH retrievals with those derived from CALIOP at the 
global scale reveals that the ALH from TROPOMI has a mean negative bias of 2.4 km over land and 
negative bias of 1 km over ocean (Nanda et al., 2020), and the bias becomes larger as surface 
reflectance increases. At the same time, several techniques have demonstrated that using the O2-B band 
or O4 band to derive ALH over land is helpful to mitigate the negative impact of high surface reflectance 
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often observed in the O2-A band over land ALH retrieval (Xu et al., 2017; Xu et al., 2019; Park et al., 
2016).  

Overall, techniques of passive ALH retrieval from space are at varying levels of maturity and 
further work is needed to improve the product readiness and accuracy, and enhance the treatment of 
O2 absorption spectroscopy, the surface reflectance and aerosol optical properties, and the shape of 
aerosol profile in the retrieval algorithm. However, with existing production of ALH data from TROPOMI 
and planned production of ALH from GEMS, an era of routine global ALH is emerging. Future missions 
such as 3MI on MetOp-SG, the Sentinel-4 and Sentinel-5 missions, MAIA, TEMPO, and PACE, will provide 
the measurements in the UV and O2 (A, B, or O4, and other) absorption bands, some at multiple angles 
and/or with polarization. These future missions will enable the development of new ALH retrieval 
techniques and offer enhancements to existing techniques that can be applied globally and 
operationally in the near future.  

In brief, an era of operational production of ALH data at high spatial resolution (<10 km) globally 
and at high temporal resolution (hourly) over the Northern Hemisphere is emerging in the second 
decade of the 21st century. AC-VC will work with the community by facilitating the cross-validation of 
different ALH products, the exchange of algorithm developments among different teams and groups, 
and potential development of new algorithms from multiple GEO sensors and their synergy with LEO 
sensors.  

The need to progress on the exploitation of aerosol vertical distribution information is captured 
in Recommendation 2. 
 

3.5. Synergistic Retrievals 
 
In the past decade, increasing efforts have been made to explore the combination of 

measurements from multiple sensors in order to obtain aerosol products with a better performance or 
to retrieve more aerosol parameters as compared to a retrieval using data from a single sensor. To date, 
most multi-sensor retrieval algorithms are still in the research and development stage, but the results 
have been promising. For an enhancement of PM estimation, the best available information on aerosol 
amount, type, and vertical distribution needs to be brought together. More research and development 
on synergistic satellite products is also needed to make a step in this direction. 

 
RECOMMENDATION 5: Pursue the development of synergistic retrievals in order to combine the best 
available information on aerosol amount, type (proxy for composition), and vertical distribution from 
multiple sensors.  

 
 
3.5.1. Retrieving a Suite of Aerosol Products from Multispectral Imager and Imaging 

Spectrometer 
 
The high spatial resolution of multispectral imagers is a key feature in aerosol observation: one 

of the most important benefits of a small footprint size is the high yield of observation with little or no 
contamination by clouds. High spatial resolution is also valuable when observing localized emissions, e.g. 
from fires or volcanic events. Imaging spectrometer products typically have significantly lower spatial 
resolution but offer additional and complementary spectral information. While imagers are strong in 
constraining AOD, many spectrometers additionally capture height information that can be extracted 
from the UV reflectance or from oxygen absorption signatures (e.g., O2-O2, O2-A, O2-B), and allow for 
distinguishing mineral dust from other aerosol types using an absorption feature of mineral dust in the 
UV. High spatial resolution information on clouds and scene heterogeneity is used to enhance the 
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aerosol retrieval from spectrometer data. For example, the synergies between the TEMPO spectrometer 
and the ABI on GOES-16 and between the GEMS spectrometer and AHI on Himawari-8 are being 
explored. The spectrometers on the atmospheric Sentinels (Copernicus Sentinel-4, -5, and -
5P/TROPOMI) benefit from using imager data for cloud masking and treatment of scene heterogeneity, 
but the full exploitation of the synergy is subject to future developments.  

Multispectral multi-viewing imagers with polarimetric capabilities (such as 3MI) or without (such 
as MISR) offer valuable information on the aerosol amount and type but little information on the 
vertical aerosol distribution. This information should be exploited in synergy with the height information 
that can be extracted from the spectrometer measurements (e.g., UV, O2-O2, O2-A, O2-B). A dedicated 
product offering 3MI and Sentinel-5 radiance data on a common spatial grid is being considered by 
EUMETSAT in order to facilitate the development of retrievals schemes exploiting this synergy.  

 
3.5.2. Multiple Views by Combining Multiple Sensors 
 
In some satellite constellations, multiple sensors view the same target at the same time from 

different directions. This is the case for the geostationary imagers of the GOES-R series and the 
upcoming TEMPO spectrometer. Similarly, the future Geostationary Extended Observations (GeoXO) 
system will also comprise imagers and spectrometers that offer such multi-viewing observations. This 
capability will enable inferring the height of aerosol plumes and clouds based on parallax features, and a 
better characterization of surface reflectance and aerosol properties (Wang et al., 2014). 
 

3.6. Earth Radiance Data 
 

Aerosol retrieval algorithms use observed radiance data that are converted to reflectances to 
derive AOD and other aerosol properties. Space agencies that operate satellite sensors coordinate under 
the Global Space-based Inter-Calibration System (GSICS) to develop procedures for sensor calibration in 
a consistent manner to achieve consistent accuracies in derived Level 2 products such as AOD. Sources 
of calibration errors (e.g., diffuser degradation) are identified and corrected using similar techniques so 
radiance data among different sensors are well calibrated and accurate even if different aerosol 
algorithms are used by various Level 2 product developers. The current generation of imagers, such as 
VIIRS, AHI, and ABI, will continue to make measurements for the next several decades. Therefore, 
ensuring consistency in calibration of radiances used to generate multi-instrument and multi-decade 
aerosol products is important. For typical multispectral imagers/sensors, the key performance 
parameters that could have direct impact on radiometric calibration and AOD data are: relative spectral 
response (RSR), signal-to-noise ratio (SNR), nonlinearity, calibration accuracy (absolute and relative), 
calibration stability (short- and long-term), polarization responsivity, stray light rejection and crosstalk, 
and response versus scan-angle (for scanning radiometers). Working under the umbrella of the World 
Meteorological Organization (WMO) supported GSICS, space agencies ensure that calibration 
parameters are established pre-launch and monitored in orbit regularly to identify any calibration 
instability. These practices depend on vicarious calibration, onboard calibration, inter-satellite 
comparisons, and systematic ground-based or sub-orbital coincident measurements to keep track of 
calibration. When instrument calibration changes occur or artifacts are identified, product developers 
are expected to reprocess the data to account for those changes and deliver a consistent dataset to the 
users.   

Establishing how calibration errors impact AOD is not straightforward because the algorithms 
are multispectral and there can be competing and compensating errors. Calibration errors can also 
influence the AOD product through the impact on the upstream cloud mask algorithm. Typically, when 
calibration changes are identified (usually via comparisons with ground truth, typically AERONET for 
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AOD), the AOD product is regenerated with updated calibration and then the reprocessed AOD data are 
compared to ground truth again to demonstrate that due to calibration improvements, AOD are 
meeting the specified requirements in terms of accuracy/bias, precision, and root mean square error.  

Users of AOD have been fortunate that there are two MODIS instruments and two VIIRS 
instruments currently operating. Because the algorithm to derive AOD from MODIS is the same for Aqua 
and Terra, time series analysis of the two products on monthly time scales can shed light on calibration 
differences and drifts. In fact, Terra MODIS suffered an anomaly in 2003, rendering onboard calibration 
impossible, and the sensor’s calibration drifted from that of Aqua MODIS. Sayer et al. (2015) discuss the 
Terra MODIS calibration adjustments to account for the drift and how reprocessed AOD with new 
calibration improved the product accuracy and brought the AOD data closer to that from Aqua MODIS. 
Lyapustin et al. (2014) developed a technique to remove residual calibration trends from both Terra and 
Aqua MODIS and cross-calibrate the older and less stable MODIS Terra to MODIS Aqua making them, 
effectively, the same sensor. This calibration is applied in MODIS land discipline processing Collection 6 
and higher and in the MAIAC algorithm. Schutgens et al. (2020) mentions the “remarkable” stability and 
agreement between MAIAC Terra and Aqua AOD, which is partly a consequence of the applied 
calibration enhancement. A similar analysis has recently been completed at NASA to remove residual 
trends and cross-calibrate the VIIRS SNPP and NOAA-20 to MODIS Aqua, which will allow for creation of 
a consistent MODIS-VIIRS AOD record and extend the MODIS long-term record into the future.  

In the same way, NOAA currently has two VIIRS instruments in orbit on the SNPP and NOAA-20 
satellites. Comparisons of AODs from the two VIIRS instruments for data acquired between 1 November 
2018 and 1 February 2019 showed that NOAA-20 VIIRS AOD is biased higher than that of SNPP VIIRS by 
0.017 over land and lower by -0.016 over ocean. These differences are attributed to calibration offset at 
all reflective solar bands (Table 3, Uprety et al., 2020; Cao et al., 2021). When each of the wavelength 
radiances in the NOAA SNPP VIIRS AOD algorithm was adjusted with offsets to match the NOAA-20 
calibration, the differences in retrieved AODs were similar to those observed between SNPP and NOAA-
20 VIIRS AODs derived with their respective operational (at launch) calibrations 
(https://www.star.nesdis.noaa.gov/jpss/documents/AMM/N20/Aerosol_AOD_Validated.pdf). This 
exercise demonstrated that both absolute calibration biases as well as changing calibration over time 
need to be monitored to ascertain the accuracy of retrieved AOD and its use in deriving surface PM2.5.  
 
 
Table 3. VIIRS Reflective Solar Bands and calibration bias between NOAA-20 and SNPP VIIRS. 

Band 
(Wavelength) 

Calibration Bias  
(NOAA-20/SNPP VIIRS) 

M1 (412 nm) -3% 

M2 (445 nm) -1.7% 

M3 (488 nm) -2.6% 

M4 (550 nm) -3.2% 

M5 (672 nm) -5% 

M7 (865 nm) -3.8% 

M8 (1240 nm) -2.7% 

M9 (1378 nm) -1.2% 

M10 (1610 nm) -1.9% 

M11 (2250 nm) -2.2% 
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RECOMMENDATION 6: Continue efforts to establish, monitor, and enhance the radiometric 
calibration consistency of space-borne multispectral imagers. Continue and strengthen related efforts 
made by the Global Space-based Inter-Calibration System (GSICS). 
 
 

4. Estimating Surface PM2.5 
 
Given the large public health burden due to PM2.5 exposure worldwide (Cohen et al., 2017), 

there is a pressing need to continue to improve surface PM2.5 product at high spatial resolution to assess 
various adverse health outcomes linked to PM2.5 pollution (Pope and Dockery, 2006). Maps of near-
surface PM concentrations with contiguous spatial coverage are needed for estimating exposure and for 
epidemiological studies. High temporal resolution is also important for air quality management, for 
source characterization, for sensitive individuals, and to manage specific diseases such as asthma. Given 
the current limited number of PM measurement stations, it is not possible to infer reliable estimates for 
locations without monitoring by using simple spatial interpolation (Miller et al., 2007; Zeger et al., 2000). 
With global coverage, satellite remote sensing has been used to estimate surface PM2.5 to complement 
ground monitoring networks both spatially and temporally (Hoff and Christopher, 2009).  

Most passive satellite sensors that provide an aerosol product report AOD as a measure for the 
total column aerosol amount. Deriving near-surface PM concentrations from AOD values is difficult. 
Challenges are related to uncertainties in the microphysical properties of the particles, their size 
distribution and vertical distribution, hygroscopic state, etc. Currently, a variety of approaches are 
employed to constrain near-surface PM using satellite AOD data and auxiliary information, as outlined in 
Sections 4.1 to 4.5. A review of strategies for using satellite-based products in modeling PM2.5 is 
provided e.g. by Sorek-Hamer et al. (2020) and by Zhang et al. (2021). The present white paper aims at 
formulating a set of best practices for constraining near-surface PM using a combination of satellite 
aerosol observations, ground-based observations, and the information from atmospheric chemistry and 
transport models. 

 

4.1. Statistical Methods  
 

The simplest form of using AOD to predict PM2.5 is to correlate them in a linear regression model 
with PM2.5 surface concentrations as the dependent variable and collocated satellite AOD in space and 
time as the independent variable (Christopher and Gupta, 2020; Wang and Christopher, 2003). After 
model fitting, a PM2.5 value can be predicted by a given AOD using this relationship. This relationship 
then can be used to estimate the spatiotemporal patterns of PM2.5 in grid cells with satellite AOD 
coverage where ground monitors of PM2.5 are not available. The validity of such simplistic relationships 
is limited, as they do not even capture basic features such as vertical distribution or hygroscopicity. 

Therefore, multiple regression techniques have been developed to predict PM2.5, which include 
meteorological variables such as relative humidity, temperature, PBL height, wind speed, and wind 
direction (Gupta and Christopher, 2009; Liu et al., 2005). These meteorological variables are usually 
obtained from a numerical model that contains all the meteorological and other relevant parameters. 
While it is tempting to use any and all information to see if it improves the correlation coefficient, it is 
important to ensure that this is based on the physics of the problem and to include only parameters that 
are most important for estimating PM2.5. For example, columnar humidity is an important factor 
because of particle hygroscopic growth. Wind speed is important because the speed of the air mass over 
the PM2.5 location governs how the spatiotemporal collocations must be matched. Regardless, results 
indicate that the improvement in predictability of PM2.5 from AOD is region specific because 
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meteorology, aerosol sources, and the ability of satellite sensors to provide accurate AOD retrievals for 
the region are specific to different regions (Chu et al., 2016).  

The relationship between satellite AOD and surface PM2.5 concentration has strong 
spatiotemporal heterogeneities. Early studies often assumed linear and static linkages between PM2.5 
and AOD as well as other ancillary variables, resulting in relatively low and sometimes unstable 
prediction accuracy. When estimated PM2.5 values are compared to observed PM2.5 values that were not 
used in the training, the linear correlation coefficient (R2) is often lower than 0.6. Various more 
sophisticated and flexible statistical modeling techniques have been reported in the literature since then 
to account for the spatiotemporal variability of the PM2.5-AOD relationship, including the generalized 
additive model (GAM) (Liu et al., 2009), geographically weighted regression model (GWR) (Bai et al., 
2016; Hu et al., 2013; Ma et al., 2014; Song et al., 2014), linear mixed-effects model (LME) (Chudnovsky 
et al., 2012; Lee et al., 2011; Zheng et al., 2016), hierarchical models (Hu et al., 2014; Kloog et al., 2014; 
Liu et al., 2009), Bayesian down-scalers (Chang et al., 2013; Geng et al., 2018; Wang et al., 2018), and 
data fusion models that combine satellite retrievals and chemical transport model simulation results 
(Friberg et al., 2018). These efforts have greatly improved the prediction skill at regional to global scales 
with the cross validation (CV) R2 generally increased to 0.6-0.8. In recent years, machine learning 
algorithms, such as random forest (RF) (Hu et al., 2017; Mhawish et al., 2020; Vu et al., 2019; Wei et al., 
2020), extreme gradient boosting (XGBoost) (Reid et al., 2015; Xiao et al., 2018; Just et al., 2020), neural 
network (Park et al., 2020), and ensemble-based machine learning (Di et al., 2019; Yazdi et al., 2020), 
among others, have also been applied to PM2.5 prediction. Compared to advanced statistical models, 
machine learning algorithms have better ability to address the complex non-linear relationships 
between PM2.5 and AOD, and thus, often have greater model accuracy (CV R2 is generally higher than 
0.8).  

It is worth emphasizing that PM2.5 is not measured at 0% relative humidity (RH), but rather is 
operationally defined by the conditions of the instrument or laboratory used for the measurement. In 
the United States the RH is often defined as within 30%-40% following US EPA protocols, but some 
networks (e.g., Interagency Monitoring of Protected Visual Environment, IMPROVE) employ different 
protocols. European PM2.5 measurements are often at 45%-55% RH. Relationships derived between AOD 
and PM2.5 need to account for geographic variation in the definition of PM2.5 across networks and 
jurisdictions. 

The successful application of statistical models requires a sufficient training dataset generated 
from collocated satellite AOD and ground-based PM2.5 measurements in a study region (Liu, 2013). In 
many parts of the globe, either the ground observations are not available or the satellite AOD retrievals 
are not available due to persistent cloud cover, bright surfaces, etc. The lack of a sufficient training 
dataset in these locations restricts the use of statistical models for estimating surface PM2.5 from AOD.  

Advanced geostatistical regression models (GRMs) are emerging in which a set of aerosol 
products are used to “calibrate” the regression coefficients. For example, a GRM is foreseen to 
transform the aerosol properties retrieved from MAIA radiance and polarization imagery to PM 
concentrations from surface PM monitors. Sources of training data include PM2.5 and PM10 networks 
operated by environmental agencies in the MAIA target areas, the Chemical Speciation Network (CSN) 
and IMPROVE network (Solomon et al., 2014), the Surface PARTiculate mAtter Network (SPARTAN) 
(Snider et al., 2015), additional SPARTAN stations and a set of second generation Aerosol Mass and 
Optical Depth (AMODv2) speciated PM samplers (an upgrade of the instrument described in Wendt et 
al., 2019), and several aethalometers. 

Aerosol predictors in the MAIA GRMs are not limited to AOD. Using AERONET inversion 
products, Sorek-Hamer et al. (2019) found that other optical components contribute to distinguishing 
between nitrate, elemental carbon, and dust. Supplementary geospatial data including population and 
roadway densities and meteorological information such as PBL height and wind speed from the Weather 



Page | 38 

 

Research and Forecasting model coupled with Chemistry (WRF-Chem) will be used as ancillary 
predictors. A Bayesian framework with prescribed probabilistic distributions of the model coefficients 
will be used to integrate this information. Speciated PM maps will be generated at 1 km spatial 
resolution. To fill spatial gaps (e.g., due to clouds) and to generate PM products on days when a 
particular target area is not observed by the satellite, a separate set of GRMs will use the surface PM 
monitors to correct biases in PM estimated by WRF-Chem. At locations with both satellite-based and 
WRF-Chem-based PM estimates, the results will be merged using an ensemble averaging approach 
(Murray et al., 2019). MAIA data processing and product archival and distribution will take place at the 
NASA Atmospheric Science Data Center (ASDC). 
 
RECOMMENDATION 7: Further develop and enhance statistical PM estimation tools including 
schemes based on machine learning. 
 

4.2. Geophysical Scaling Methods  
 
Given the absence of routine ground-based PM2.5 monitoring networks in many regions of the 

world, the scaling method is advantageous, as it does not require ground measurements for model 
development. The scaling method uses a chemical transport model (CTM) to simulate the association 
between AOD and PM2.5, and then calculates satellite-derived PM2.5 using Equation 1:  

 
Satellite-derived PM2.5 =  × Satellite AOD  (1) 

 
where ƞ as introduced by van Donkelaar et al. (2010) is the ratio of the simulated PM2.5 to simulated 
AOD (Liu et al., 2004). η is designed to represent all of the processes that relate columnar AOD at 
ambient RH for clear-sky conditions at the satellite overpass time to PM2.5 at controlled RH for all-sky 
conditions.  

The scaling method is designed to enable PM2.5 concentration estimates over regions with 
sparse or no routine air quality monitoring. However, in regions of dense monitoring, if calibration of 
ground measurements is neglected, the scaling model tends to have higher prediction errors in 
estimated PM2.5 than that derived from statistical models. Current scaling approaches employ 
subsequent statistical calibration to address this issue (e.g., van Donkelaar et al., 2016; 2021).  

Liu et al. (2004)  applied Equation 1 to MISR data over the contiguous US, making joint use of the 
GEOS-Chem and Georgia Tech/Goddard Global Ozone Chemistry Aerosol Radiation and Transport 
(GOCART) models. This method was extended by van Donkelaar et al. (2006, 2010) to use a combination 
of MISR and MODIS data, and has been further studied and refined in later publications to generate 
global maps of near-surface PM2.5 concentrations and track multi-year trends (Boys et al., 2014; van 
Donkelaar et al., 2016a), including monthly timescales (van Donkelaar et al., 2021). Data from the Sea-
viewing Wide Field-of-View Sensor (SeaWiFS) (Sayer et al., 2012) was later incorporated to provide a 
longer time series.  

These satellite-based maps of PM2.5 have been used in the Global Burden of Disease (GBD) and 
many other health studies. Dey et al. (2012) applied the CTM-based AOD-to-PM2.5 scaling approach to a 
decade of MISR data to study PM2.5 over the Indian subcontinent, and applied linear scaling to correct 
for a systematic underestimation of PM concentration relative to surface samplers. Philip et al. (2014) 
extended the scaling approach in conjunction with MODIS and MISR data to estimate the concentrations 
of chemical constituents of PM2.5 (including sulfate, nitrate, ammonium, organic matter, black carbon, 
and dust) using PM2.5 component concentrations from GEOS-Chem to generate species-specific values of 

. Comparisons with surface measurements over North America showed high correlation coefficients 
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and slopes near unity for sulfate, nitrate, and ammonium, and weaker yet positive correlations for the 
other constituents.  

Numerical model simulations still have challenges in properly characterizing aerosol spatial, 

temporal, and vertical distributions, thereby leading to uncertainties in the estimation of . Studies have 
shown that large uncertainties in estimated PM2.5 can result from uncertainties in the modeled AOD-
PM2.5 relationship (Jin et al., 2019). Recognizing these issues, statistical methods have been applied 
more recently to calibrate the predictions from the geophysical scaling approach (van Donkelaar et al., 
2016; Hammer et al., 2020; van Donkelaar et al., 2021) where the residuals of the scaling method 
derived PM2.5 were applied to the GWR model to improve the estimates of PM2.5. 
 
RECOMMENDATION 8: Continue to develop the ability of chemical transport models to relate AOD to 
PM2.5 to represent long-term PM2.5 concentrations. 

 
 

4.3. Geophysical Scaling Method using Multiple Satellite AOD Products 
 

A large community relies upon annual estimates of PM2.5 derived from a geophysical scaling 
framework. This approach, as recently described by van Donkelaar et al. (2021), begins with AOD from 
multiple datasets. As described in section 3.3, these AOD datasets are combined to a monthly mean on a 
0.01° grid using consistent uncertainty definitions determined using AERONET-based comparisons. 
Satellite retrievals comprise most (>90%) of the population-weighted AOD due to their accuracy in 
regions with significant population density, while simulated AOD provides larger contributions in 
locations where seasonal snow-cover and cloud-cover inhibit satellite retrievals. Spatial information 
from the 1 km MAIAC AOD retrieval is incorporated for the finest scale features at 0.01°, whereas 
several satellite sources are incorporated to represent AOD features at 0.1°. 

Geophysical surface PM2.5 concentrations are obtained from the combined AOD by applying the 

simulated PM2.5 to AOD ratio (). This ratio implicitly and dynamically accounts for the effects of 
changing meteorology and composition via the chemical transport model simulation that is used for its 
calculation. Similarly, the impact of sampling frequency and overpass time can be accounted for within 

the definition of . 
This geophysical framework is often augmented by statistical fusion with ground-based 

monitors to produce a hybrid PM2.5 estimate. Geographically Weighted Regression (van Donkelaar et al. 
2016; Hammer et al. 2020; van Donkelaar et al. 2021) and Bayesian Hierarchical Modeling (Shaddick et 
al. 2018) have both been used to predict and account for residual biases in the geophysical PM2.5 
estimates. The predictor variables used to produce these hybrid values are associated with uncertainties 
in the simulated relation of PM2.5 to AOD, such as simulated aerosol types, sub-grid topographical 
variation and urban surfaces. 

Figure 5 shows the combined AOD, geophysical PM2.5, and hybrid PM2.5 estimates for 2018 from 
van Donkelaar et al. (2021). Elevated PM2.5 concentrations are apparent over East Asia and South Asia 
reflecting a wide variety of sources as extensively discussed in the literature. Enhancements over North 
Africa and the Middle-East are driven by regional mineral dust sources. Lower concentrations over North 
America and western Europe reflect regional emission controls. Evaluation of these geophysical 
estimates versus ground-based measurements, shown in Figure 6, yields significant agreement with 
R2=0.79 and a slope of 0.96 versus the widely used annual mean PM2.5 concentrations compiled by the 
World Health Organization. This agreement offers promise for satellite-derived PM2.5 in regions with low 
monitor density, as the geophysical estimates are independent of ground monitor data. The statistically 
fused (hybrid) GWR estimates for 2018 further enhance this agreement, with 10-fold out-of-sample 
cross validated agreement of R2=0.95 and slope of 1.01. This high level of agreement demonstrates the 
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added value in incorporating ground-based observations into the geophysical estimates. Expansion of 
the ground-based PM2.5 dataset by including data from the literature and from unvalidated networks 
such as OpenAQ reinforces the greater uncertainty that exists in poorly monitored regions and the need 
for additional ground-based monitoring.  
 

 

 
Figure 5. Annual mean combined AOD, geophysical and hybrid PM2.5 for 2018 from van Donkelaar et al. (2021).  
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Figure 6. Comparison of geophysical and hybrid PM2.5 with ground-based observations in the World Health 
Organization (WHO) database, and additionally other available ground-based sites. Grey text for the hybrid plots 
corresponds to cross-validated comparisons. 

 
 

4.4. Statistical Methods with Dynamic Updating of Regression Parameters 
 
Statistical methods can be significantly enhanced by updating the parameters of the regression 

model dynamically in a daily or hourly manner using surface PM2.5 measurements and satellite AOD. 
Approaches to derive surface PM2.5 can be different based on the application, and therefore the 
uncertainties of the derived PM2.5 may also be drastically different. The question is the tolerance and the 
requirement of the specific application. While benchmarks can be laid out for the level of certainty with 
which surface PM2.5 should be derived, they cannot be the same for human health/mortality estimates 
done on annual mean basis compared to hourly and daily estimates of surface PM2.5 for issuing pollution 
alerts and warnings. These disparities also bring forth the differences in concentration ranges and the 
algorithm approach to estimate surface PM2.5 with same level of certainty across all concentration 
ranges. In near real-time, during a pollution event related to dense smog in China, a dust storm in Africa, 

or smoke from wildfires, hourly PM2.5 concentrations can reach up to 1000 g/m3, whereas when annual 
means are computed, concentrations are a hundred times smaller. Given the large dynamic range of 
concentrations, care must be taken in placing demands on an algorithm or method that scales AOD to 
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surface PM2.5 and expected uncertainty. NOAA has been deriving surface PM2.5 from satellite AOD 
(MODIS) over the continental United States (CONUS) using a climatological PM2.5-AOD regression 
relation based on the geophysical scaling approach. However, because the PM2.5-AOD relationship can 
change over time, this method can have large errors when the relationship deviates from the 
climatological scaling factors. 

NOAA, NASA, and US EPA have partnered to develop a near real-time surface PM2.5 product 
using NOAA’s Advanced Baseline Imager (ABI) AOD product for dissemination to users via US EPA’s 
AirNow website (https://www.airnow.gov/). This effort is based on converting ABI AODs to surface PM2.5 
using a GWR algorithm (Zhang and Kondragunta, 2021). However, the parameters of the regression 
model are derived dynamically in a daily or hourly manner using surface PM2.5 measurements from 
regulatory monitors and AOD from ABI on the GOES-16 or GOES-17 satellite instead of the climatological 
PM2.5-AOD relationship. On these shorter timescales, the algorithm performs much better than using 
simple climatological relationships derived using scaling methods. The estimated daily PM2.5 from VIIRS 
AOD has a cross validation CV R2 of 0.59 with surface measured PM2.5, bias of 0.09 µg/m3 and root mean 
square error (RMSE) of 5.66 µg/m3. The estimated hourly PM2.5 from ABI AOD has a CV R2 of 0.44, bias of 
0.04 µg/m3, and RMSE of 4.53 µg/m3 (Figure 7). The algorithm will run in near real-time at NOAA to 
provide PM2.5 estimates over the CONUS to the air quality community. It is anticipated that the 
estimates will be available within two hours of data capture.  

 
 

 
 

Figure 7. Hourly PM2.5 estimates: (a) from ABI AOD using GWR algorithm; (b) from ABI AOD using the climatological 
relations based on Geophysical approach. ABI, Advanced Baseline Imager; AOD, aerosol optical depth; GWR, 
geographically weighted regression. From Zhang and Kondragunta (2021). 

 
 

With sufficient training data, machine learning (ML) techniques – such as those mentioned in 
Section 4.1 – can be used to improve upon the simulated AOD-PM2.5 relationships used to estimate 
PM2.5 at higher temporal frequency than the annual mean (e.g., Carmona et al., 2020; Gupta et al., 
2021). Using NASA’s Modern-Era Retrospective Analysis for Research and Application, version 2 
(MERRA-2; Gelaro et al., 2017) combined meteorology and aerosol reanalysis product, in combination 
with surface measurements of PM2.5, Carmona et al. (2020) and Gupta et al. (2021) developed ML 
models to estimate PM2.5 in regions of the world which can have relatively high PM2.5 concentrations (an 

https://www.airnow.gov/
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urban area in Northeastern Mexico and Thailand, respectively). MERRA-2 is a coupled chemistry-
meteorology model (CCMM) with both meteorology and aerosol data assimilation that outputs a global 
gridded product available at a horizontal resolution of 0.5° x 0.625°. As shown in Figure 8 (Gupta et al. 
2021), MERRA-2 has the aerosol components necessary to calculate PM2.5 but it is expected to have 
representative errors when comparing the grid-box average to point source measurements (Figure 8, 
left). The ML techniques can overcome these errors, drastically improving the predictive capability when 
using simulated aerosol output (Figure 8, right), and can be used not only in retrospective studies but 
also for bias correcting PM2.5 forecasts. 

These ML and statistical techniques can improve regional estimates of PM and add value to 
existing MERRA-2 estimates.   
 

 

  
 
Figure 8. Comparison between hourly PM2.5 observations (x-axis) to model-estimated concentrations (y-axis) for 
Thailand in 2018, with MERRA-2 reanalysis derived surface PM2.5 (left) and a machine learning estimated PM2.5 
using MERRA-2 AOD, aerosol and meteorlogy fields as input parameters (right). From Gupta et al. (2021). 

 
 

4.5. Assimilation of Aerosol Products 
 
Atmospheric composition (AC) models describe sources and sinks of atmospheric components, 

related chemical processes and transport. AC models with a focus on aerosol capture primary sources, 
secondary particle formation, hygroscopic growth and many other driving processes. Data Assimilation 
(DA) can be used to combine heterogeneous sets of satellite and ground-based aerosol observations 
with model information in an optimal way. DA systems are used to initialize forecast simulations of 
PM2.5 with various lead times and to generate reanalysis which can provide consistent long time series of 
climate data records. Such methods benefit from 1) a more realistic representation of key physical and 
chemical processes influencing PM2.5, which ensures better consistency between PM2.5 estimate and the 
other atmospheric parameters, and 2) the potential of Earth observations to reduce the uncertainties in 
the initial conditions used to forecast aerosols. Though costly to implement and sometimes having 
spatial resolutions that are coarser than observations, DA systems account for all sources of 
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uncertainties (e.g. emissions) and can provide a more comprehensive error budget for PM2.5 compared 
to empirical methods.  

At present there are several operational AC modelling systems that employ aerosol data 
assimilation. CAMS relies on the ECMWF/IFS model and assimilates MODIS and Polar Multi-sensor 
Aerosol properties (PMAp) AOD to provide the best initial conditions for global forecast of aerosol 
mixing ratios and PM variables (Morcrette et al., 2009; Remy et al., 2019). While the NASA and Naval 
Research Lab aerosol forecast systems utilize AOD assimilation for their global aerosol forecast systems 
(Randles et al., 2017; Zhang et al., 2014), the NOAA National Weather Service (NWS) currently relies on 
the Community Multiscale Air Quality (CMAQ) model without data assimilation to inform their hourly 
PM2.5 forecasts for the US. AOD assimilation to improve CMAQ predictions is under testing at NOAA 
(Tang et al., 2017; Kumar et al., 2019). JMA’s Model of Aerosol Species IN the Global AtmospheRe 
(MASINGAR, Tanaka et al., 2003; Tanaka and Chiba, 2005) that assimilates AHI AODs for aerosol 
predictions regionally (Yumimoto et al., 2018).  

Uncertainties in aerosol modeling using DA are driven by uncertainties in the AC models and in 
satellite retrievals. Uncertainties in aerosol models include uncertainties in the forcing data sets, 
particularly the large range of anthropogenic, biogenic, and biomass burning emission sources, 
uncertainties in the aerosol optical properties and their spatiotemporal variability, inaccuracies in the 
representation of the complex emission (e.g., at times satellite observations are not timely, especially 
smoke from fires which cannot be currently measured at night), deposition and aging processes which 
are strongly coupled with meteorology and chemistry (Ryder et al., 2019), the characterization of the 
variability of secondary organic aerosol optical properties (Tsigaridis et al., 2014), the representation of 
dust absorbing properties (Balkanski et al., 2021), inaccuracies in the observation operator used in the 
DA system (Liu et al., 2011, Tang et al., 2017, Cheng et al., 2019), discrepancies between satellite 
retrieval and its model equivalent due to use of distinct/limited aerosol models, and radiative transfer 
model assumptions. In addition, the impact of DA can diminish after 1-2 days. This is in part due to 
replacement of air masses but also because of emissions biases, such as persistence of fires releasing 
emissions at the same rate in the forecast period that dominate over the forecasting window (Ye et al., 
2021). Satellite retrieval uncertainties include cloud contamination, radiometric calibration issues, the 
instrument information content (which varies with geometry configuration and is not always sufficient 
to properly separate the aerosol and the surface reflectance signal), the simplified assumptions used in 
the forward radiative transfer model, the representation of the surface anisotropy particularly over 
bright surfaces, and the low number of aerosol models which may fail to properly represent the diversity 
of aerosol physicochemical properties at global scale (Garrigues et al., 2022).  

A critical challenge in predicting PM2.5 from an aerosol model and DA is related to the speciation 
of aerosols and a lack of vertical profile information from the imagers. Total AOD does not provide 
constraints on the model aerosol species. The application of the increments is generally weighted by a 
priori ratios between species mixing ratio provided by the background error covariance matrix.  
The role of DA in enhancing PM2.5 prediction is envisioned to grow as advancements in satellite sensors 
and products occur. Specifically, an ability to separate AOD into fine mode and coarse mode, 
information on absorbing AOD, spectral AOD, AE over land and ocean, SSA, thermal infrared 
observations for dust, and aerosol vertical distribution from lidar backscatter measurements should help 
to distinguish between aerosol species and to estimate their optical properties more accurately. At the 
outset, some of this information from satellites may be qualitative but opportunities exist to exploit the 
data and iterate between product development/enhancement and usage in the models.  

The success of aerosol DA systems depends critically on the skill of aerosol modules in 
atmospheric composition models. The AEROCOM community performance model inter-comparisons 
and evaluation with reference data to assess the overall quality of the state-of-the-art aerosol 
simulation schemes (https://aerocom.met.no). The continuation of these efforts is key to track the 

https://aerocom.met.no/
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evolution of the aerosol modelling skill. The capabilities of aerosol DA systems can be evaluated in 
multiple ways, which include checking that the uncertainties in the analyzed fields are lower than those 
of the model background (Saide et al., 2013), comparison against independent satellite or ground-based 
observations of the assimilated variable or a different variable such as aerosol absorption or PM 
(Buchard et al., 2017; Saide et al., 2020) and looking at variables resulting from processes involving 
interactions with aerosols such as downward solar radiation, cloud properties or meteorological surface 
parameters (Saide et al., 2015; Randles et al., 2017). 

 
RECOMMENDATION 9: Continue and reinforce efforts (such as those made by the AEROCOM 
community) to evaluate and improve the skill of aerosol models and the capability of aerosol 
assimilation schemes. 

 
 
The quality of aerosol information obtained by data assimilation suffers from inconsistencies in 

the representation of aerosols and assumptions made in satellite retrievals and in the atmospheric 
model system. Inconsistencies in aerosol parameters are hard to avoid, since aerosol retrieval schemes 
typically employ a discrete set of aerosol classes while atmospheric models work in a continuous 
parameter space. ALH products from satellites provide an effective scattering height that is not uniquely 
linked to the vertical profiles of particle number densities and other particle properties. The cloud state 
in the model can deviate from the true cloud state that influences the satellite observation. Resulting 
misinterpretations are difficult to eliminate by cloud masking, also since the distinction between aerosol 
and clouds is to some degree arbitrary. Research and development are needed to identify way to 
mitigate these inconsistencies.  

Failure of aerosol DA systems to achieve consistency between AOD and surface PM2.5 
performance can be due to many reasons, including misrepresentation of vertical distribution of 
aerosols, meteorological variables important for the AOD computation (e.g., relative humidity), 
speciation of aerosols, and optical properties calculations. Due to the large list of factors potentially 
explaining inconsistencies, field campaigns, in conjunction with long-term ground-based measurements 
can be very useful to understand the issues as they provide a large array of observations to disentangle 
the different factors, with some of these observations not being available from standard observational 
sites. An example study is reported in Saide et al. (2020), where aircraft observations were used to show 
that issues in optical properties computations were mostly responsible for worsening performance in 
PM2.5 predictions during a Chinese haze event when assimilating AOD and provided ways to address 
them. 

 
RECOMMENDATION 10: Pursue scientific developments to identify ways to improve the consistency 
of the representation of aerosol between models and satellite products.  
 

The use of satellite products in DA depends critically on the completeness and quality of the 
product uncertainty. Observational error (diagnostic and prognostic) information should be 
standardized between various satellite products and their use in DA system; observation errors should 
be prognostic and derived from proper optimal interpolation approaches (Sayer et al., 2020). 
Information on correlation errors between products along with spatial and temporal correlations are 
frequently missing. The ongoing work within the AEROSAT/AEROCOM community can be leveraged. 
Investments need to be made to observe on the ground aerosol optical properties spatially and 
temporally with good geographic coverage to represent diverse aerosol sources. Without correlative 
ground observations, validation of aerosol properties other than AOD and their assimilation into models 
will become challenging. Many satellite products that capture aerosol parameters fall short on providing 
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such estimates. Formal uncertainty estimation is difficult for algorithms in which discrete aerosol models 
or even different retrieval strategies are used and selected depending on scene parameters. The 
uncertainty of prior information used may not be available. The reporting of a posteriori uncertainty 
including co-variances is usually missing, especially for parameters with very different character (e.g. 
amount, layer altitude, and particle size). 

 
RECOMMENDATION 11: Reinforce efforts to improve uncertainty estimates in satellite aerosol 
products, in order to facilitate their use in data assimilation schemes. 
 

Assimilating clear-sky satellite radiance measurements is emerging as an alternative approach to 
assimilating aerosol products from satellites. Schemes that assimilate infrared radiance data have been 
applied successfully in operational weather forecast services. Following this strategy also in the visible 
was until recently impossible because of the heavy computational burden of radiative transfer 
computation including multiple scattering. The evolution of computing power has opened this path to 
be explored. Assimilating clear-sky satellite radiance could facilitate the synergistic use of observations 
from distinct satellites and should ensure better consistency with the modelled aerosol optical 
properties, which is a great source of uncertainty in AOD retrievals (Benedetti et al., 2018). It should also 
improve the use of multi-satellite observations over non-optimal surfaces such as cloudy regions, bright 
land surfaces, and glint regions over the ocean. However, further development efforts are needed to 
design appropriate observation operators in the UV-VIS spectral domain and pre-processing steps such 
as data quality check and cloud screening. 
 
RECOMMENDATION 12: Pursue the development of schemes for the assimilating Earth radiances 
measured by space-borne sensors.  

 
 

5. Calibration and Validation 
 
The central challenge to be tackled in satellite-informed PM estimation schemes is the 

understanding of the link between satellite observables and local near-surface PM concentrations. In-
depth analyses supported by comprehensive data sets are needed to improve this understanding. One 
of the main challenges is that there are many driving aerosol and scene parameters that need to be 
constrained at the same time. Intensive campaign activities are needed to collect comprehensive 
reference data sets containing in-situ PM measurements, ground-based remote sensing observations as 
a reference data for satellite observables, meteorological parameters, scene characteristics, and aerosol 
characteristics including microphysical properties, size distribution, and small scale horizontal and 
vertical distribution of the abundance. The latter is needed to bridge the gap between in-situ 
measurements and estimates or observations that are representative to extended air masses. 

A combination of co-located reference measurements supported by model simulations is 
needed in order to generate comprehensive reference data sets. Surface PM2.5 measurements need to 
be combined with measurements of aerosol speciation and aerosol size distributions, along with profiles 
of aerosol extinction, backscatter, and mixed layer heights (e.g., ceilometers, MPLNet, HSRL). These 
measurements should be collocated with ground-based remote sensing of aerosol optical properties 
from both visible (AERONET see Appendix A6.2) and UV (Pandora) instruments so that multispectral 
aerosol retrievals can be validated. The EPA Photochemical Assessment Monitoring Stations (PAMS) 
Enhanced Monitoring Plans (https://www.epa.gov/sites/production/files/2019-
11/documents/pams_monitoring_network_and_emp_plan_guidance.pdf) and NCore Multipollutant 

https://www.epa.gov/sites/production/files/2019-11/documents/pams_monitoring_network_and_emp_plan_guidance.pdf
https://www.epa.gov/sites/production/files/2019-11/documents/pams_monitoring_network_and_emp_plan_guidance.pdf
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Monitoring Network (https://www3.epa.gov/ttnamti1/ncore.html) could provide many of these 
capabilities for long-term validation of satellite aerosol retrievals and assessment of the fidelity of 
assimilated PM2.5 analyses. These long-term measurements would allow robust statistical comparisons 
between surface PM2.5 and satellite AOD retrievals to quantify the uncertainty of the satellite based 
PM2.5 estimates. The Surface Particulate Matter Network (SPARTAN) combines a suite of ground-based 
in-situ measurements covering PM and aerosol microphysical parameters with sun photometers (see 
Appendix A6.4). Active instruments such as ceilometers (see Appendix A6.3) play a key role in 
constraining the aerosol vertical distribution, the boundary layer height, and cloudiness. The 
combination of fully automated and low-cost sensors might be possible for many stations for an 
extended period of time.  

 
RECOMMENDATION 13: Collect and analyze comprehensive reference data sets including 
measurements from ground-based in-situ PM sensors and co-located radiometers and ceilometers, in 
order to enhance the understanding of the link between satellite observables and near-surface PM 
concentrations. 
 

Comparisons of PM estimates with reference measurements need to be made in order to 
quantify random and systematic errors, to verify uncertainties expected by data producers, to verify the 
compliance with users’ needs, and eventually to establish and assess the data product quality in a 
traceable way. Systematically acquired in-situ measurements of near surface PM concentrations from 
operational networks are the backbone for the validation. Several national and international 
environmental agencies run operational networks of air quality monitoring stations that include in-situ 
sensors measuring PM, which are well suited for providing the needed reference data (see Appendix 
A6.1). There are also growing networks of low-cost sensors from private sectors and citizen scientists 
that are relevant for PM2.5 monitoring. One example for such a network is PurpleAir (PA) which records 
PM2.5, PM10, PM1 and makes measurement data publicly available in real-time (see Appendix A6.1). Low-
cost sensors have great potential to complement regulatory monitoring networks and to extend their 
spatial coverage. Efforts are needed to calibrate such low-cost sensors with regulatory air quality 
monitors to account for biases that may depend on aerosol type, aerosol concentration, temperature, 
relative humidity, and other environmental conditions.  

 
RECOMMENDATION 14: Validate satellite-informed PM products, using ground-based in-situ PM data 
from operational networks. Pursue extending the source of PM reference data by calibrating low-cost 
PM2.5 sensors and developing correction methodologies.  

 
The development and validation efforts can be made smoothly if the satellite products, model 

data, and ground-based reference data collected in the validation domain are easily accessible by the 
teams involved. The creation of a dedicated data center that ensures this data access should be 
considered.  
 
RECOMMENDATION 15: Create a data center for providing access to validation data. 

 
 

6. Outlook 
 
The present white paper has been initiated and written by the CEOS Atmospheric Composition 

Virtual Constellation (AC-VC) in order to trigger and coordinate science activities and development 

https://www3.epa.gov/ttnamti1/ncore.html
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efforts that strengthen the role of satellites in constraining particulate pollution levels. An effort has 
been made to take stock of the current state of play of relevant satellite sensors, satellite data products, 
PM estimation schemes, and related validation approaches. A set of specific and actionable 
recommendations has been made to enable and enhance satellite-informed PM pollution monitoring. 
These recommendations concern activities that need to be picked up by the satellite remote sensing 
community and the air quality modelling community. Most of the recommendations are cross-cutting in 
the sense that they need to be tackled in a coordinated joint effort by players from both communities.  

Building on the progress and evolutions targeted here, the AC-VC community will consider 
developing use cases to demonstrate how satellite-informed PM2.5 information is aiding various decision 
support systems, such as the provision of air quality alerts, diagnosing the impact of smoke on human 
health, air quality monitoring in areas with sparse ground monitoring, designing new regulations, 
changes to prescribed burning to limit pollution in downwind regions, etc. These use cases will provide 
insights into the application capabilities and limitations for specific decision support systems and 
capacity building. 
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Appendix A:  
Summary of Individual Satellite Sensors that Provide Aerosol Information 

 
 
This Appendix describes in detail the sensors with observation capabilities covering the lower 
troposphere that are relevant for PM monitoring. Individual sensors on current and planned satellites 
are summarized in Table A1 (LEO satellites) and Table A2 (GEO satellites). 
 

A1. Geostationary Sensors 
 
A1.1. The INSAT Series  
 
The Indian national geostationary satellite, INSAT-3D, has been providing continuous data since 

2013 over the region of South Asia bounded by 44.5 °E to 105.5 °E and 10 °S to 45.5 °N (Mishra et al., 
2018, Lima et al., 2019). The Imager onboard INSAT-3D makes observations at a temporal interval of 30 
minutes with visible (0.55-0.75 μm), short-wave infrared (1.55-1.70 μm), mid-wave infrared (3.80-4.0 
μm), water vapor (6.50-7.10 μm) and thermal infrared (10.3-11.3 μm and 11.5-12.5 μm) channels. The 
spatial resolutions of the visible, short-wave infrared, and water vapor channels are 1 km, 1 km, and 8 
km respectively, whereas the resolution of the mid-infrared and thermal infrared channels are 4 km. 
Mishra (2018) developed the INSAT-3D AOD algorithm by adopting the GOES AOD GASP algorithm. GASP 
uses a fixed value of background AOD for correcting the darkest observation to derive surface 
reflectance. A similar approach is used in the INSAT-3D AOD algorithm but instead using a dynamic value 
of background AOD due to high aerosol loading and high seasonal and geographical variability of AOD 
over Asian countries. Mishra et al. (2014) include a thorough discussion of the algorithm, including the 
retrieval and validation of the AOD product from INSAT-3D. AOD from INSAT-3D agrees with ground-
based instruments within 45% and 30% over land and ocean, respectively. These differences are 
expected as the current INSAT-3D AOD algorithm uses a single broad visible channel (0.55-0.75 μm) with 
a static aerosol model (rural model over land and maritime model for oceans) leading to significant 
uncertainties.  

Currently, the accuracy of INSAT-3D AOD over land is being enhanced by selecting an 
appropriate set of spatially and temporally dynamic aerosol models based on ground-based 
measurements and on multispectral sensors onboard polar-orbiting satellites. The aerosol product from 
INSAT-3D described here has been made operational on the MOSDAC and VEDAS data portals 
(https://vedas.sac.gov.in). Furthermore, implementation of the present algorithm on both INSAT-3D and 
INSAT-3DR will provide AOD at an interval of 15 minutes (as the former provides observations at HH:00, 
HH:30 and the latter at HH:15 and HH:45, where HH represents hour) over the South Asia region. In 
addition, there are plans to launch future geostationary satellites for enhanced real-time monitoring 
with higher spatial and spectral resolution, which is expected to help in retrieving not only AOD, but also 
other aerosol optical parameters with improved accuracy.  

 
A1.2. The GOES-R Series  
 
The launch of the GOES-R Series ABI has advanced the capabilities of operational aerosol and air 

quality monitoring many fold with 5-min observations routinely over the CONUS (Schmit et al., 2017; 
Kondragunta et al., 2020). More importantly, the new generation ABI has 16 channels, with multiple 
channels in the visible and shortwave IR, compared to one broad visible band on the legacy GOES   

https://vedas.sac.gov.in/
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Table A 1. Characteristics of sensors on current and planned LEO satellites relevant for PM monitoring. 

Sensor Sensor Class* Satellite(s) Launch Date 
Daytime 

Equatorial 
Crossing Time 

Number of 
Spectral 
Bands 

Spectral Wavelength Range† 

3MI PMI-M 
MetOp-SG A 
series 

Expected in 2024 9:30 12 VIS-NIR-SWIR (410-2130 nm) 

SGLI PMI-M GCOM-C December 2017  10:30 19  NUV-VIS-NIR-SWIR-LWIR (0.38-12μm) 

MAP MI-M AOS-P1 Expected in 2030 13:30  TBD VIS-NIR 

PACE HyperSpectral  Expected in 2024 13:30 >70 UV-VIS-NIR-SWIR (340-2130 nm) 

ATLID L Earthcare Expected in 2023 14:00 1 355 nm 

CALIOP L CALIPSO April 2006 13:30 2 532, 1064 nm 

HSRL L AOS-P1 Expected in 2030 13:30 2 532, 1064 nm 

DPC PMI-M GaoFen-5 May 2018, Sept 2021 98.12 8 VIS-NIR (443-910 nm) 

EMI IS GaoFen-5 
May 2018 and Sept 
2021 

13:30   240-790 nm 

MAIA PMI-M TBD No earlier than 2023 10:30 14 UV-VIS-NIR-SWIR 

METimage 
(VII) 

MI 
MetOp-SG A 
series 

Expected in 2024 9:30 20 VIS-NIR-SWIR-MWIR-LWIR (443 nm to 13 µm) 

MISR MI-M Terra December 1999 10:30 4 VIS-NIR (446, 558, 672, 866 nm) 

MODIS MI 
Terra December 1999 10:30 

32 
VIS-NIR-SWIR-MWIR-LWIR (0.41-2.11 μm, 3.9-
14.2 μm) Aqua May 2002 13:30 

OCM MI OceanSat-2 September 2009 12:00 8 VIS-NIR  

CAI-2 MI GOSAT-2 October 2018 13:00 10 NUV-VIS-NIR (340-1630 nm) 

TROPOMI IS S5P October 2017 13:30  UV-VIS-NIR-SWIR  

VIIRS MI 
SNPP October 2011 13:30  

(50 min offset) 
22 VIS-SWIR-MWIR-LWIR (0.41 μm to 12.01 μm) 

NOAA-20 November 2017 

S5/UVNS IS 
MetOp-SG A 
series 

Expected in 2024 9:30   UV-VIS-NIR-SWIR 

*Sensor Class abbreviations: 
L: lidar 
MI: multispectral imager 
MI-M: multispectral imager with multiple viewing directions 
PMI-M: polarimetric multispectral imager with multiple viewing directions 
IS: imaging spectrometer 
MAP: Multi-Angle Polarimeter 

 
 
†Wavelength range abbreviations: 
Near-infra-red (NIR): 0.75-1.4 μm 
Short-wave-infra-red (SWIR): 1.4-3 μm  
Middle-wavelength-infra-red (MWIR): 3-8 μm  
Long-wave-infra-red (LWIR): 8-15 μm 
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Table A 2. Characteristics of sensors on current and planned GEO satellites relevant for PM monitoring. 

Sensor 
Sensor 
Class* 

Satellite(s) Date Launched 
Central 

Longitude (°) 

Number of 
Spectral 
Bands 

Spectral Wavelength Range† 

ABI MI 
GOES-16 November 2016 -75.2 

16 
VIS-NIR-SWIR-MWIR-LWIR (0.47, 0.64, 0.86, 
1.37, 1.6, 2.2, 3.9, 6.2, 6.9, 7.3, 8.4, 9.6, 
10.3, 11.2, 12.3, and 13.3 m) GOES-17 March 2018 -137.2 

AGRI MI FY-4 December 2016 105 14 VIS-SWIR-MWIR-LWIR  

AHI MI 
Himawari-8 October 2014 140.7 

16 
VIS-SWIR- MWIR-LWIR (0.47, 0.51, 0.64, 
0.86, 1.61, 2.26, 3.9, 6.19, 6.95, 7.34, 8.5, 
9.61, 10.35, 11.2, 12.3, and 13.3 m) Himawari-9 November 2016 140.7 

AMI MI GEO-KOMPSAT-2A December 2018 128.2 16 
VIS-NIR- MWIR-LWIR (0.48, 0.51, 0.64, 0.86, 
1.38, 1.61, 3.8, 6.2, 6.9, 7.3, 8.6, 9.6, 10.4, 
11.2, 12.3, 13.3 µm) 

GEMS IS GEO-KOMPSAT-2B February 2020 128.2 1000 UV-VIS (300-500 nm) 

GOCI MI GEO-KOMPSAT-2A December 2018 128.2 8 
VIS-NIR (412, 443, 490, 555, 660, 680, 745, 
and 865 nm) 

GOCI-2 MI GEO-KOMPSAT-2B February 2020 128.2 12 
UV-VIS-NIR (380, 412, 443, 490, 510, 555, 
620, 660, 680, 709, 745, and 865 nm) 

Imager MI INSAT-3D July 2013 82 6 
VIS-SWIR-MWIR-LWIR (0.55-0.75 μm, 1.55-
1.70 μm, 3.80-4.0 μm, 6.50-7.10 μm, 10.3-
11.3 μm and 11.5-12.5 μm) 

SEVIRI MI 

Meteosat-8 (MSG) August 2002 41.5 

12 
VIS-NIR-SWIR-MWIR-LWIR (0.635, 0.81, 
1.64, 3.92, 6.25, 7.35, 8.7, 9.66, 10.8, 12.0, 
13.4 μm) 

Meteosat-9 (MSG) December 2005 3.5 

Meteosat-10 (MSG) July 2012 9.5 

Meteosat-11 (MSG) July 2015 0 

TEMPO IS  Expected in 2022 100  UV-VIS (290-490 nm, 540-740 nm) 

S4/UVN IS MTG-S series Expected in 2024 0 3 
UV-VIS-NIR (305-400 nm, 400-500 nm, 750-
775 nm) 

 
*Sensor Class abbreviations: 
MI: multispectral imager 
MI-M: multispectral imager w/ multiple viewing directions 
PMI-M: polarimetric multispectral imager w/ multiple viewing directions 
IS: imaging spectrometer 

 
†Wavelength range abbreviations: 
Near-infra-red (NIR): 0.75-1.4 μm 
Short-wave-infra-red (SWIR): 1.4-3 μm 
Middle-wavelength-infra-red (MWIR): 3-8 μm 
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Long-wave-infra-red (LWIR): 8-15 μm 
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imagers. NOAA launched GOES-R (16) on 19 November 2016 as GOES-East and GOES-S (17) on 12 March 
2018 as GOES-West. A notable difference between the ABI and the Himawari AHI is the missing green 
band (525 nm), due to which an ABI true color image like those from MODIS and VIIRS cannot be made; 
NOAA, however, developed algorithms to create a pseudo green band and generates GeoColor images 
for users (Miller et al., 2020).  

ABI aerosol products are expected to meet specific performance requirements for accuracy and 
precision. The availability of the products at high temporal resolution (every 5 min) and spatial 
resolution (~2 km) also increases the value to operational users. The GOES-R ABI also provides aerosol 
detection (smoke and dust mask) and various false color imagery to help operational end users interpret 
aerosol events of different types and scales in real time. This is a new feature of the ABI and was not 
available from the legacy GOES imagers. The aerosols/air quality relevant products currently generated 
and distributed to science and operational users are GeoColor imagery, dust RGB imagery, fire 
temperature RGB imagery, fire detection and characterization (includes fire radiative power), 
smoke/dust detection, and aerosol optical depth. 

NOAA has found that applying the heritage aerosol optical depth algorithms, developed for 
polar-orbing sensors (e.g., MODIS) to geostationary imagers creates some challenges. In particular, 
NOAA found that significant effort needs to be devoted to understanding spectral surface reflectance 
relationships prescribed in most AOD algorithms. The relationships derived for MODIS or VIIRS (e.g., 
SWIR vs. red/blue bands) are not adequate for geostationary geometry; consequently, there can be a 
diurnal bias in retrieved ABI AOD. NOAA tested both its AOD product as well as the NASA DT algorithm 
applied to GOES-16 ABI and found that both products have a diurnal bias at some AERONET stations 
(Zhang et al., 2020). Overall, over land, based on an analysis of five months of data (August-December 
2018), the GOES-16 ABI AOD has a mean bias of 0.01 compared to AERONET and a RMSE difference of 
0.06. Despite these good performance metrics, in conditions of low AODs (background values), the 
diurnal bias is quite significant. NOAA developed an empirical bias correction algorithm that minimizes 
the bias and the technique can be applied to any geostationary satellite AOD algorithm (Zhang et al., 
2020). 

The GOES-16 ABI AOD product is recommended for use from 25 July 25 2018 and the GOES-17 
ABI AOD product is recommended for use from 1 January 1 2019. The default “flex mode” scan mode of 
the GOES-16 satellite changed to Mode 6 (full disk every 10 minutes) on 2 April 2 2019. The GOES-17 ABI 
experienced an anomaly soon after launch which does not significantly impact the AOD product as the 
anomaly is associated with thermal wavelengths.  

 
A1.3. The Himawari Series  
 
The Japan Meteorological Agency (JMA) launched the Himawari-8 geostationary meteorological 

satellite on 7 October 2014; the satellite became operational in July 2015. Himawari-9, which is identical 
to Himawari-8, was launched on 2 November 2016 and entered a backup status in March 2017 
extending until 2022. The AHI onboard Himawari-8/9 is capable of frequent and flexible observations, 
providing full disk images of the earth every 10 minutes. AHI is also capable of target area observations, 
which provide regional imagery covering a 1000 km x 1000 km area every 2.5 minutes with flexibility for 
location changes. The nominal resolution for AHI bands is 1 km in the visible to near infrared and 2 km 
from the shortwave to thermal infrared, with the exception of the red band which is at 0.5 km 
resolution. AHI has 16 observation bands at 0.47, 0.51, 0.64, 0.86, 1.61, 2.26, 3.9, 6.19, 6.95, 7.34, 8.5, 

9.61, 10.35, 11.2, 12.3, and 13.3 m (Bessho et al., 2016), which enables the retrieval of aerosol 
properties. The three wavelengths in the visible spectrum allow for true color imagery; however, AHI 

lacks a 1.38 m band sensitive to upper-level clouds. The AHI aerosol optical properties (AOP; AOD and 
AE) products have been developed and released from the Earth Observing Research Center (EORC) of 
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the Japan Aerospace Exploration Agency (JAXA); these products are available via the Himawari Monitor 
website (https://www.eorc.jaxa.jp/ptree). The Level 2 aerosol products include full disk AOD and AE at a 
wavelength of 500 nm every 10 min in near real-time (Yoshida et al., 2018). The Level 3 product consists 
of hourly AODs derived from a combination of the Level 2 10-min AODs. Taking advantage of Himawari-
8’s high-frequency observations, the combination of Level 2 AODs enables minimization of the number 
of AOD pixels missing because of cloud and sun glint and removes degradation due to cloud 
contamination (Kikuchi et al., 2018). Himawari-8 AOD is utilized in the aerosol DA of the global aerosol 
model for the aeolian dust forecast. 

 
A1.4. The GEOKOMPSAT Series 
 
The AMI onboard the Geostationary Earth Orbit-Korea Multi-Purpose SATellite-2A (GEO-

KOMPSAT-2A or GK-2A) is providing imagery every 10 minutes at 500 m (VIS Red), 1 km (VIS Green & 
Blue, NIR), and 2 km (SWIR to TIR) resolution. The AMI has 16 channels centered at visible (0.48, 0.51, 

0.64 m), NIR (0.86 m), SWIR (1.38, 1.61 m), MWIR (3.8, 6.2, 6.9, 7.3 m), and TIR (8.6, 9.6, 10.4, 
11.2, 12.3, 13.3 µm) wavelengths. AMI is basically the same instrument as ABI and AHI, but it is the 
missing the 2.2 µm band. This complicates the surface reflectance retrieval, but the YAER algorithm was 
applied using the 1.6 µm band instead (Lim et al., 2018; Lim et al., 2021). Two types of algorithms were 
developed for AMI using AHI data as a proxy: one with the minimum reflectance method (MRM), and 
the other with estimation of surface reflectance (ESR) in the visible using the 1.6 µm band. Comparison 
with AERONET for four months in each season of 2016 showed correlation coefficients of 0.78 to 0.89 
(MRM) and 0.63 to 0.89 (ESR) over land and 0.87 to 0.95 (MRM) and 0.74 to 0.93 (ESR) over ocean. 
Merged products using MRM and ESR at both the surface reflectance level and AOD product level show 
improved statistics (Lim et al., 2018).  

 
A1.5. The MetoSat Series  
 
The EUMETSAT is the operational agency in Europe that partners with the European Space 

Agency (ESA) and launches weather satellites into geostationary orbits (Meteosat series). The current 
Meteosat Second Generation (MSG) series of satellites carry the Spinning Enhanced Visible and Infrared 
Imager (SEVIRI) with 12 channels (2 visible, 1 near infrared, one high resolution visible, and 8 thermal 
infrared) at ~3 km nadir view resolution with 15 minutes temporal resolution. There are various SEVIRI 
AOD products developed by research groups available (e.g. Popp et al., 2007; Bernard et al., 2011; 
Zawadzka and Markowicz, 2014; Zawadzka-Manako et al., 2020). SEVIRI false color spectral composite 
data are exploited by the WMO dust and sand storm warning system (Martinez et al., 2009). The SEVIRI 
AOD product produced operationally in the Cloud-Aerosol-Water-Radiation Interactions (ICARE) data 
center (Bernard et al., 2011) is planned to be used in the CAMS global real-time forecast system. 
EUMETSAT’s next generation of geostationary satellites, the Meteosat Third Generation (MTG) series, 
will carry the 16-channel Flexible Combined Imager (FCI). The FCI is similar to ABI, AHI, and AMI and 
offers imaging of aerosols at 10 to 15 minutes temporal refresh rate. The added value of assimilating FCI 
observations for monitoring aerosol has been shown in an Observing System Simulation Experiment 
(OSSE) by Descheemaecker et al. (2019).  

 
A1.6. The FengYun-4 (FY-4) Series 
 
The Chinese Meteorological Administration (CMA) operates its second generation of FY-4 series 

of satellites with an Advanced Geosynchronous Radiation Imager (AGRI), which is similar to ABI, AHI, and 
AMI. The AGRI instrument, launched on FY-4A in December 2016, became operational in June 2018. It 

https://www.eorc.jaxa.jp/ptree
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has three visible, three shortwave infrared, and eight infrared channels. The red visible band has 0.5 km 
resolution, similar to ABI, AHI, and AMI. The nominal nadir view resolution of the visible bands is 1 km, 
the shortwave infrared bands is 2 km, and the infrared bands is 4 km. The FY-4A instrument is a 
pathfinder mission for the series and is centered in CMA’s East location at 105 oE with a 15-minute 
temporal refresh rate (Yang et al., 2017).  

The FY-4B satellite, with an identical instrument suite to FY-4A but with improved spatial 
resolution, is expected to launch in the 2020s. CMA maintains two operational meteorological satellites, 
one in its East location (105 oE) and one in its West location (86.5 oE). When launched, FY-4B and FY-4C 
will provide continuous monitoring of AOD, aerosol detection, and various false color aerosol imagery 
into the 2040s. The FY4 series of satellites is expected to make a significant contribution to the GeoRing 
for aerosols and air quality. Zhang et al. (2019) presented a preliminary assessment of AGRI AOD 
retrievals via comparison to MODIS AOD and AHI AOD and found that the AGRI AOD correlates well with 
MODIS AOD at the 10% level and with AHI AOD at the 20% level for an optical depth of unity. The 
authors offered an opinion that dust and volcanic ash detections will improve with the FY-4B satellite 
because the AGRI instrument will be enhanced by improving the infrared channel resolution to 2 km and 
also by expanding the number of channels from 14 to 18. that the dust and ash detection algorithms 
utilize infrared channels and the expectation is that retrievals will improve with improved spatial 
resolution. 

  
A1.7. The Geostationary Ocean Color Imager (GOCI) Series  
 
The GOCI onboard the GK-1 satellite, also known as the Communication, Oceanographic, and 

Meteorological Satellite (COMS), has provided hourly imagery since 2011. GOCI is the first multi-channel 
instrument in geostationary orbit with visible and near-infrared channels centered at 412, 443, 490, 555, 
660, 680, 745, and 865 nm, covering the East Asia region every hour with a spatial resolution of 500 m x 
500 m. Aerosol optical properties including AOD, fine mode fraction (FMF), SSA, and aerosol type are 
retrieved in 6 km x 6 km resolution by the YAER algorithm (Lee et al., 2010; Choi et al., 2016; Choi et al., 
2018). Higher spatial resolution data are also available at 500 m resolution, but with slightly higher 
uncertainty (Lee et al., 2017). GOCI aerosol product version 1 (Choi et al., 2016) was based on a look-up 
table (LUT) approach and minimum reflectance method which required observations over a 30-day 
search window. GOCI aerosol product version 2 (Choi et al., 2018) is now available with its near real-
time processing and improved accuracy, which utilizes a climatological database from the multi-year 
GOCI dataset. GOCI aerosol products have been validated against AERONET and correlative satellite 
observations including those from MODIS and VIIRS (Xiao et al., 2016; Choi et al., 2016; Choi et al., 2018, 
Choi et al., 2019). GOCI aerosol products have been used widely in data assimilation (Park et al., 2014; 
Saide et al., 2014; Jeon et al., 2016; Lee et al., 2017; Pang et al., 2018; Jung et al., 2019; Lee et al., 2020; 
Saide et al., 2020), detection of long-range aerosol transport (Lee et al., 2019), analysis of diurnal 
variation (Lennartson et al., 2018), and the estimation of surface PM concentrations (Xu et al., 2015; 
Park et al., 2019; Goto et al., 2019; Tang et al., 2019; Park et al., 2020; She et al., 2020).  

The GOCI-2 onboard the GK-2B satellite was launched in February 2020, with additional 
channels in the ultraviolet (380 nm) and visible (510 nm, 620 nm, 709 nm). GOCI-2 has full disk imaging 
once per day, in addition to hourly East Asian coverage, with a spatial resolution of 250 m, which allows 
for retrieval of aerosol products at a spatial resolution of 3 km or better. The YAER algorithm has been 
modified for GOCI-2 and is under in-orbit test for official data release in 2022.  

 

A2. Geostationary Spectrometers 
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A2.1. GEO-KOMPSAT-2B GEMS  
 
GEMS was launched onboard the GK-2B satellite in February 2020. The objective of GEMS is to 

monitor air quality at an unprecedented spatial and temporal resolution from a geostationary Earth 
orbit for the first time (Kim et al., 2020). GEMS is a step-and-stare scanning UV-visible imaging 
spectrometer with a spectral resolution of 0.6 nm (3 samples/band) covering 300-500 nm. A UV-
enhanced two-dimensional charge coupled device (CCD) takes images with east-west scanning every 
hour, with one axis spectral and the other north-south spatial. The GEMS instrument covers the Asian 
region (~5 oS to 45 o N latitude, ~75 oE to 145 oE longitude), which has large emission sources and 
contains about half of the global population. On orbit calibrations include daily solar measurements and 
weekly LED light source linearity checks. With its sophisticated retrieval algorithms, the GEMS 
instrument provides column amounts of atmospheric pollutants (e.g., O3, NO2, SO2, HCHO, CHOCHO, 
aerosols). Aerosol optical properties including AOD, SSA, aerosol effective height (AEH), and UVAI are 
retrieved by optimal estimation (OE) and an OMI-type algorithm (Go et al., 2020; Kim et al. Details can 
be found in Kim et al. (2020). After completion of the in-orbit testing, GEMS products are planned to be 
released from early 2022. 

 
A2.2. Tropospheric Emissions: Measurement of Pollution (TEMPO)  
 
NASA’s TEMPO instrument, to be launched by a commercial communications satellite as a 

hosted payload into a geostationary orbit at 91 oW longitude near the equator in 2022, will be the US’s 
first atmospheric composition mission. TEMPO is ultraviolet-visible spectrometer with two detectors 
(290-490 nm and 540-740 nm) capable of measuring air quality and climate relevant trace gases and 
aerosols in the atmosphere. While some trace gases will be total column only, some trace gases will 
have tropospheric column amounts separated from total column amount, and for some trace gases like 
ozone, the retrievals will include PBL amount as well. GEMS, UVN, and TEMPO are expected to form a 
GeoRing for air quality and atmospheric composition, observing trace gases and aerosols on urban to 
continental and diurnal to seasonal scales to study air quality, climate, and their linkages, as well as 
documenting exceptional events and hemispheric transport for monitoring applications. 

There are no legacy instruments for TEMPO; it is a pathfinder mission and the first of its kind for 
the US. The heritage instruments are OMI and OMPS. The first of the two TEMPO detectors has 290-490 
nm hyperspectral coverage (0.6 nm resolution and product spatial resolution of 2.1 km x 4.5 km) and is 
similar to OMI. TEMPO will make measurements similar to OMI but on hourly timescales and with 
enhanced spatial resolution. The scientific algorithms for TEMPO are adapted from OMI’s UV AI 
algorithm, but additional approaches using synergy between TEMPO and the GOES-16 ABI are being 
explored. The synergistic algorithm is expected to provide a suite of aerosol products including 
improved surface PM2.5. Data from GEMS and the Himawari-8 AHI are being used to test the new 
algorithms prior to the launch of TEMPO.  

 
A2.3.  Sentinel-4 UVN  
  
The geostationary Copernicus mission Sentinel-4 (S4) will provide hourly observations of the 

atmospheric composition over Europe mainly for air quality applications (Ingmann, 2012; ESA, 2017). 
The key products of the missions are NO2, O3, SO2, HCHO, CHOCHO, and aerosols. The S4 Ultraviolet-
Visible-Near-Infrared (UVN) instrument is an imaging spectrometer with spectral bands in the UV, 
visible, near infrared. The spatial sampling distance is 8 km × 8 km at a reference location at 45 °N, 
where a resolution of about 9 km N/S × 12 km E/W will be achieved. A series of two S4 instruments will 
be carried on the geostationary Meteosat Third Generation-Sounder (MTG-S) satellites. First MTG-S 
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satellite with a S4/UVN on board is expected to be launched in 2024. The mission has been developed 
by ESA and will be operated by EUMETSAT. S4 is an element of the geostationary air quality 
constellation together with GEMS and TEMPO. The FCI instrument on the MTG-I satellite provides co-
located cloud and surface information that can be used in synergy with the S4/UVN measurements to 
optimize the aerosol retrievals. 

S4 will provide several data products relevant to PM monitoring: 

 The ALH algorithm will provide information on the vertical aerosol distribution extracted 
from the relative depth and spectral shape of the O2-A band. Within the algorithm, the 
aerosol layer is approximated by one single homogeneous layer with a vertical thickness 
of 50 hPa. The output parameters include the mid-pressure of this layer and the 
associated geometric height in (labelled as ALH) and the AOD at 760 nm. The retrieved 
ALH is reported to be accurate (within 1 km) for cases with AOD > 0.3, ALH > 1.5 km, and 
a surface reflectance < 0.4. The product will help characterize events with pronounced 
emission plumes but will be of limited use for characterizing near-surface particle 
pollution with low optical thickness. 

 The UV AI product will provide an index for detecting elevated UV absorbing aerosol. It 
is derived from the spectral contrast in the UV. This index can be used for detecting and 
tracking plumes of aerosols (e.g. desert dust, volcanic ash, smoke). 

 A joint surface and aerosol product will be generated on a daily basis from temporally 
aggregated reflectance data in a set of spectral window bands. The product is based on 
the GRASP (Dubovik et al., 2014) algorithm. The output includes hourly data for surface 
bidirectional reflectance, AE (450-755 nm), and AOD at 342, 368, 410, 443, 490, and 755 
nm.  

 The NO2 and SO2 products will provide vertically integrated column densities of these 
trace gases derived from their absorption signatures in the UV-visible spectral range. 
Local formation rates of nitrate and sulfate aerosol particles can be predicted based on 
local concentrations of the precursor gases including NO2 and SO2. For estimating the 
contribution of these processes to near-surface PM, additional information on the 
vertical distribution of the precursor gases is needed that is not provided by the 
satellite. 

 

A3. Polar-Orbiting Imagers 
 
A3.1. MODIS  
 
There are two MODIS instruments observing the Earth “system;” on Terra since early 2000 and 

on Aqua since 2002. Offering wide swath views (~2300 km), each MODIS observes portions of the 
Visible, NIR, SWIR and TIR spectrum with nearly global daily coverage. MODIS offers measurements of 
solar reflectance in 20 spectral bands (0.41-2.11 μm) and Earth’s emittance in 16 spectral bands (3.9-
14.2 μm). Most bands are at 1 km spatial resolution (nominal, at nadir view); however, five solar 
reflectance bands (SRB) are at 0.5 km, and two are at 0.25 km. The higher-resolution SRB (Bands 1 to 7 
or B1-B7), having low gain settings to observe a wide dynamic range, are centered near 0.47 μm (blue), 
0.55 μm (green), 0.66 μm (red), 0.86 μm and 1.24 μm (NIR), as well as 1.64 μm and 2.13 μm (SWIR). The 
lower resolution SRB bands (B8-19) include 0.412 μm (known as Deep Blue), bands with high gain 
settings (e.g. 0.443, 0.488, 0.531, 0.551, 0.667, 0.678, 0.748 and 0.869 μm) that were intended to 
measure the narrow dynamic range of ocean color, and three bands around 0.93 μm that are used to 
measure water vapor. There is one more SRB (B26) centered near 1.38 μm, a water vapor absorption 
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band, which is sensitive to detecting high altitude cirrus clouds. In addition to having many new bands 
compared to earlier sensors (such as AVHRR), the MODIS ground, flight and science teams have 
developed new methods for maintaining the stability of orbit (keeping the nominal 10:30 AM and 13:30 
PM equator crossing times) and the stability of calibration through on-board and vicarious calibration 
methods. This attention to orbit/calibration details has allowed the MODIS observational data record to 
be a possible basis of the long-term climate data record. The MODIS teams have also embraced the idea 
of “Collections,” datasets encompassing the entire time series, using different versions of calibration 
and retrieval algorithms that evolved over time. 

There is no single “aerosol” retrieval algorithm for MODIS. Prior to launch, the MODIS science 
team was separated into three disciplines, “ocean,” “land,” and “atmosphere,” and the separation has 
generally remained. For retrieval of Earth system variables, starting with land or ocean surface 
reflectance, aerosols provide obstacles and uncertainties for “atmospheric correction.” Therefore, 
aerosol retrieval is performed, but aerosol is considered a “secondary” product except for in the MAIAC 
algorithm. Under the atmosphere umbrella, however, an aerosol retrieval product was a specific 
requirement at launch. This discussion focuses on the “atmosphere” aerosol products known as 
MxD04_L2 (where the x represents “O” for the MODIS on Terra, and “Y” for the MODIS on Aqua, and L2 
is for “Level 2”), and the MAIACMCD19A2 product offered under the “land” discipline.  

The products of MxD04_L2 are provided by combinations of three different algorithms, at a 
nominal spatial resolution of 10 km x 10 km. Physically motivated by the general auto-correlation of in-
situ observations of aerosol (e.g. Anderson, 2003), the degraded spatial resolution also compensates for 
the relatively low SNR of single pixels, and allows for filtering/masking of cloudy and other non-
retrievable pixels. The two algorithms considered “Dark Target” are directly based on the at-launch 
algorithms. These are separated into over-land (DT-L) and over-ocean (DT-B), where the Dark Target 
refers to using wavelengths where the land surface appears dark compared to the reflection of the 
aerosol above. Both DT algorithms make use of B1-7 (the higher spatial/lower gain bands), but there are 
differences in the way these bands are used. As DT-L was developed to retrieve AOD over vegetation 
and dark-soils (dark in the blue, red and SWIR wavelengths), this left a gap over arid and non-vegetated 
surfaces. The Deep Blue (DB) algorithm was developed in the early 2000s and makes use of the Deep 
Blue band (0.41 μm), which has lower reflection from desert surfaces. Both DT and DB algorithms 
(including assumed aerosol and surface properties, pixel selection and masking, inversion mathematics, 
radiative transfer, etc.) have significant differences in the assumptions and techniques. In the end, 
however, both algorithms provide estimates of total AOD in the mid-visible (e.g. 0.55 μm), along with a 
number of other aerosol parameters (e.g. fine mode fraction, AE, and/or SSA). In the current Collection 
(known as Collection 6.1), products of all three algorithms (DT-O, DT-L, and DB-L) are provided within 
the same MxD04 granule (5-minute time aggregation) file. As DT-L and DB-L both retrieve on vegetated 
(“dark”) surfaces, there are often two products over the same 10 km box.  

There are strengths and weaknesses of each algorithm, and the accuracy of the retrieved 
product varies as a function of the scene being observed. The golden standard for product accuracy is 
global and site-by-site comparison with data from ground-based sun photometers (e.g. AERONET), and 
both DT and DB algorithms claim successful retrievals on a global scale. For example, DT-L claims that 
66% of all global retrievals (that are collocated with AERONET within approximately ±15 minutes and 
averaged over a 25 km radius from the AERONET site) match AERONET values of total AOD to within 
±(0.05 + 15%). Similar envelopes for global Expected Error are given for DT-O and for DB-L, however 
there may be additional functional constraints based on observation geometry or other variables. The 
DT and DB teams, however, have noted that these validations are only for collocated observations, as 
there is no easy way to quantify the accuracy of the retrieved MODIS AOD products when there is no 
collocated ground-truth.  
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Beginning in Collection 6 (data processing in 2013), the MxD04_L2 product included a merge of 
DT-L and DB-L over land based on climatological Normalized Difference Vegetation Index (NDVI based 
on NIR and Red bands), where the DB value would be used for surfaces with low NDVI (non-vegetated), 
the DT value for surfaces with high NDVI (vegetated), and an average of the two for moderate NDVI 
conditions. However, even with the possibility of multiple retrieval techniques on any surface, only 
approximately 10-20% (depending on season) of the global observed 10 km boxes have valid aerosol 
retrievals. Neither DT nor DB retrievals are made for scenes that are cloudy, ice/snow covered, or likely 
to be contaminated by sun glint reflection.  

MODIS DT 3 km AOD is a separate product created for air quality applications, but it is lesser 
used and the uncertainties for an individual retrieval are larger (reduced signal/noise and ability to 
mask/filter pixels). 

The swath-based processing described above is associated with uncertainties because at the 
same location the footprint changes with the orbit and scan angle. At the same time, aerosol retrievals 
at high spatial resolution required for atmospheric correction and air quality research need a good 
knowledge of the surface reflectance, in particular over heterogeneous urban surfaces. For this reason, 
the Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm processing starts with 
gridding the TOA L1B MODIS 0.5km measurements to a 1-km grid. This way, observations from different 
orbits closely represent a given 1-km grid cell allowing for use of a time series analysis to characterize 
surface properties for each grid cell. MAIAC uses a dynamic minimum reflectance method (Lyapustin et 
al., 2018) to characterize spectral surface ratios for aerosol retrieval. For each 1-km grid cell, MAIAC also 
stores spatial and thermal contrasts, sub-pixel variability from 500 m channels, full spectral BRDF 
retrieved using multi-angle observations accumulated for up to 16-day period, etc. A good knowledge of 
the surface helps MAIAC achieve high accuracy cloud and snow detection and retrieve AOD at high 1-km 
resolution globally over land (except snow/ice). Due to its reliable good retrieval accuracy (~10-15%) and 
high 1-km resolution regardless of the MODIS view zenith angle, which provides coverage in partly 
cloudy conditions when AOD from the coarse resolution standard aerosol products is often missing, 
MAIAC AOD has been widely adopted for PM predictions and air quality research. Many papers 
reporting validation of MAIAC AOD against AERONET show its reliable performance at a single 1-km grid 
cell level, though depending on local aerosol variability the best performance metrics are often achieved 
at 3-7 km or coarser scales.  

MAIAC reports AOD at 1 km resolution on the global Sinusoidal grid (product MCD19A2), along 
with the 1-km column water vapor and smoke plume injection height near detected active fires. The 
surface reflectance (BRF, or bidirectional reflectance factor) is reported in MCD19A1, and spectral BRDF 
model for bands 1-8 is in file MCD19A3. The upcoming MAIAC Collection 6.1 features a number of 
improvements, including updated regional aerosol models which will remove the known 
underestimation of MAIAC AOD at high AOD for the biomass burning smoke. MAIAC C6.1 also provides a 
gap-filled spectral BRDF, NDVI and snow properties (snow fraction and grain size) for detected snow at 
1-km resolution, which is a useful resource for the satellite data processing by other algorithms, data 
assimilation systems, for PM predictions etc. 

 
A3.2. MISR  
 
The MISR instrument aboard the NASA Terra satellite has acquired continuous, near-global 

imagery about once per week for over two decades, beginning in late February 2000. MISR is comprised 
of nine cameras, viewing in an along-track configuration at angles of ±70.5°, ±60.0°, ±45.6°, ±26.1°, and 
nadir, in each of four spectral bands centered at 446, 558, 672, and 866 nm (Diner et al., 1998). MISR is 
in a sun-synchronous orbit, with a 10:30 AM equatorial crossing time. As MISR is a passive imager, these 
data provide constraints on total-column AOD, and column-effective values of aerosol size, shape, and 



Page | 84 

 

light-absorption properties under favorable retrieval conditions (Kahn and Gaitley, 2015). Aerosol 
retrievals can be performed at spatial resolutions up to individual 1.1 km pixels with a research 
algorithm (Limbacher and Kahn, 2014), though the MISR version 23 Standard product provides values at 
4.4 km horizontal resolution. For good quality aerosol intensive-property retrievals, mid-visible AOD 
generally must exceed 0.15 or 0.2, and best retrieval results are obtained over darker, more uniform 
surfaces. However, the strengths of MISR include particle-type discrimination and steep slant-path 
viewing that enhances the atmospheric signal over that of the surface. As such, aerosol air mass types 
can be mapped over complex urban areas provided the AOD is sufficiently high (e.g., Patadia et al., 
2013). 

For air quality applications, MISR’s column-effective information must be applied as partial 
constraints on the quantities of greatest interest, nose-level, size-resolved and speciated aerosol mass 
concentration (e.g., PM2.5). Aerosol transport modeling has been used to parse MISR AOD vertically for 
this application, to produce global (e.g., van Donkelaar et al., 2010; Hammer et al., 2020) or regional 
(e.g., Li, 2020) estimates of near-surface aerosol concentration. MISR constraints on particle shape were 
first used by Liu et al. (2007) to distinguish non-spherical mineral dust from spherical particles, with a 
transport model providing the vertical distribution and more detailed speciation within a regression 
modeling framework. More recent work has made use of MISR-retrieved particle size, shape, and light-
absorption results combined with surface measurements, either in a statistical approach (e.g., Franklin 
et al., 2018), or to constrain a regional air quality physical model (Friberg et al., 2018). With these 
approaches, the model is weighted toward surface stations where available, and more heavily toward 
the MISR AOD and particle-type constraints progressively downwind. Further, deSouza et al. (2020) 
presented a method that uses MISR constraints on particle size distribution to extrapolate size-resolved 
surface particle concentrations obtained from low-cost optical particle counters (OPCs); this makes it 
possible to capture the typical peak in pollution particle sizes that the OPCs miss, due to limited 
sampling ability for particle sizes below about 0.5 μm in diameter, enhancing the value of low-cost OPC 
sensors for monitoring air quality in underserved regions. 

  
 A3.3. Visible Infrared Imaging Radiometer Suite (VIIRS) 
 
NOAA currently has two VIIRS instruments in orbit – one on the SNPP satellite launched on 28 

October 2011 and one on the NOAA-20 satellite launched on 18 November 2017. The two VIIRS 
instruments continuously observe the earth with a 50-minute time difference. The VIIRS instrument is a 
follow-on to MODIS, which has been the workhorse for aerosol remote sensing for nearly two decades. 
Several instrument design changes, such as pixel resolution and limiting the pixel growth at the edge of 
the scan, have allowed for several improvements to VIIRS versus MODIS observations. The VIIRS aerosol 
products are derived from measurements made during the sunlit portion of the day. The VIIRS 
instruments have 22 bands with 16 of the bands in the visible to long-wave infrared at moderate 
resolution (750 m), five bands at imager resolution (375 m) covering 0.64 μm, 0.86 μm, 1.6 μm. 3.7 μm, 
and 11.4 μm, and one broad Day-Night Band (DNB) band centered at 0.7 μm. The NOAA VIIRS AOD 
algorithm over the ocean is based on MODIS heritage and over land the algorithm derives AOD for both 
dark targets as well as bright surfaces (Laszlo and Liu, 2016; Zhang et al., 2016; Huang et al., 2016). The 
bright surface aerosol optical depth algorithm developed by NOAA is unique to VIIRS and has been 
shown to perform well (Laszlo and Liu, 2016). In addition to AOD, NOAA also generates aerosol 
detection that qualitatively identifies the presence of smoke or dust in the atmosphere. This product is 
unique to VIIRS and is based on the absorbing aerosol index and dust smoke discrimination index, 
originally developed for MODIS (Ciren and Kondragunta, 2014; Zhang et al., 2018).  

NOAA applies a modified version of the van Donkelaar et al (2012) algorithm to scale AOD to 
surface PM2.5 for air quality applications in the US (see Section 4.4 for details). The SNPP VIIRS AOD 
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product has been extensively validated by comparing it to AERONET AODs, and the VIIRS 550 nm AOD is 
shown to have a global bias of -0.046 ±0.097 for AODs over land < 0.1 and for AODs between 0.1 and 
0.8, the bias is -0.194 ±0.322. In the US, for VIIRS AODs ranging between 0.1 and 0.8, the bias is -0.008 
±0.089 and for AODs > 0.8, the bias is about 0.068 ±0.552 (Zhang and Kondragunta, 2021).  

 
A3.4. METImage  
 
EUMETSAT and ESA have partnered to develop aerosol imagers such as METimage (also referred 

to as VII for Visible Infrared Imager) to fly on a series of MetOp-SG A satellites. METimage is a VIIRS-like 
instrument with multiple visible and infrared bands that will fly in a mid-morning orbit around the globe. 
The instrument is expected to launch in 2023 as the current era of MetOp series comes to an end. 
METimage has 20 spectral bands ranging from 443 nm to 13 µm and takes measurements at 500 m 
spatial resolution. The spectral bands are similar to VIIRS except for the 412 nm band, which is missing 
on METimage. As a result, METimage will have gaps in global coverage of the AOD and aerosol detection 
(smoke/dust mask) products; for AOD retrievals over bright surfaces, both MODIS and VIIRS instruments 
use the 412 nm measurements as the surface is relatively dark in that channel. According to the 
METimage science plan (https://www-cdn.eumetsat.int/files/2020-
04/pdf_science_epssg_metimage_plan.pdf), METimage will fly along with the Sentinel-4 UVN 
instrument on the same satellite and thus will take advantage of synergy between UVN and METimage 
to retrieve a suite of aerosol properties such as optical depth, aerosol layer height, single scattering 
albedo, and aerosol type.  

 
A3.5. MAIA  
 
While most health effects studies have focused on the effects of exposure to the mass 

concentration of PM2.5 and PM10 (e.g., Pope and Dockery, 2006; US Environmental Protection Agency, 
2019), the relative toxicity of different compositional mixtures of PM is less well understood (Bell et al., 
2007; Adams et al., 2015). This is due in part to the sparseness of surface monitors that measure 
chemical speciation (US Environmental Protection Agency, 2013). The National Research Council (2004), 
WHO (2007), and scientific literature (e.g., Li et al., 2019) have stressed the importance of improving our 
understanding in this regard. 

Satellite remote sensing, combined with surface data and chemical transport model 
information, offers a means of filling in the spatial gaps between surface monitors, thereby enabling 
improved estimates of human exposure to different types of particulate air pollution. Motivated by this 
objective, the Multi-Angle Imager for Aerosols (MAIA) investigation was selected as part of NASA’s Earth 
Venture Instrument program in 2016 (Liu and Diner, 2017; Diner et al., 2018). MAIA defines particle type 
as aerosol mixtures having different proportions of sulfates, nitrates, organic carbon, elemental carbon, 
and dust. 

A key element of the MAIA investigation is a satellite-based instrument that measures the 
radiance and polarization of sunlight scattered by the Earth’s atmosphere and surface. The instrument 
contains a pushbroom spectropolarimetric camera capable of providing multi-angle imagery. Unlike 
MISR, which contains multiple cameras pointed at discrete along-track view angles, MAIA’s single 
camera is mounted on a gimbal assembly that can point it in two axes. The along-track (scan) gimbal has 
a ±60° range of motion, while the cross-track (pan) gimbal and camera field of view provide a ±48° cross-
track field of regard. The targeting nature of the MAIA instrument enables routine multi-angle 
observations of a globally distributed set of study sites. The pan capability permits access to targets that 
are not directly situated on the sub-spacecraft track, making it possible to observe targets 3-4 times per 
week. Over most targets, images of the same area will be observed at a set of discrete view angles in a 

https://www-cdn.eumetsat.int/files/2020-04/pdf_science_epssg_metimage_plan.pdf
https://www-cdn.eumetsat.int/files/2020-04/pdf_science_epssg_metimage_plan.pdf
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“step-and-stare” sequence (see Figure A1). MAIA will be launched into sun-synchronous (near-polar) 
orbit. The host spacecraft is yet to be determined, and the launch date is anticipated to be no earlier 
than 2023. The baseline mission duration will be 3 years.  

The MAIA instrument (Figure A2) uses several remote sensing methodologies. In addition to the 
multi-angular capability provided by the gimbal, the camera has 14 spectral bands spanning the UV, 
VNIR, and SWIR. VNIR and SWIR spectral bands help discriminate particle size, while the UV provides 
sensitivity to absorption. Multi-angle polarimetry provides sensitivity to particle size and compositional 
proxies such as refractive index. Polarimetric imaging is acquired in three of MAIA’s 14 spectral bands by 
using a specialized modulation technique designed for high accuracy (Diner et al., 2007; 2010). 

The MAIA instrument operations system defines four different types of target areas: Primary 
Target Areas (PTAs), Secondary Target Areas (STAs), Calibration/Validation Target Areas (CVTAs), and 
Targets of Opportunity (TOOs). Primary Target Areas (PTAs) are major population centers designated for 
conducting epidemiological investigations by the MAIA Science Team, and measure 352 km (E/W) x 420 
km (N/S). A dozen PTAs in North America, Europe, Africa, Middle East, and Asia are the main focus of the 
investigation. Privacy-protected health data geolocated by home addresses, postal codes, or census 
block groups will be used to examine linkages to acute, sub-chronic, and chronic exposure to total and 
speciated PM. STAs are regions of interest for air quality or other aerosol and cloud research. CVTAs will 
be observed routinely for instrument calibration, stability monitoring, and product validation. 
Acquisitions over TOOs may be acquired over episodic events such as major wildfires or dust storms. 

Aerosol retrievals will be performed in ground data processing. Output parameters include total 
AOD; fractional AODs associated with two size modes (each corresponding to a lognormal distribution of 
particles), spherical, nonspherical, absorbing, and nonabsorbing aerosols; size parameters and complex 
refractive indices of the two aerosol modes; and phase function asymmetry parameter. An optimal 
estimation strategy with constraints on spatial and spectral smoothness will be used (Xu et al., 2017). 
 
 

 
Figure A 1. Example of the MAIA step-and-stare sequence, showing the case of 5 discrete view angles. 
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Figure A 2. Layout of the MAIA satellite instrument.  

 
 

A3.6. OceanSat 
 
OceanSat-1, launched in 1999, is the first Indian satellite primarily built for ocean applications in 

a sun-synchronous orbit. The satellite consists of the Ocean Colour Monitor (OCM) sensor, which 
provides multispectral imagery at a ground resolution of 360 m via eight narrow spectral bands in the 
VNIR region (μm): B1: 0.402-0.422, B2: 0.433-0.453, B3: 0.480-0.500, B4: 0.500-0.520, B5: 0.545-0.565, 
B6: 0.660-0.680, B7: 0.745-0.785, and B8: 0.845-0.885. The sensor is mainly designed to cater to ocean 
applications globally and accordingly, it has high radiometric sensitivity with a large dynamic range. AOD 
at 0.765 μm (Das et al., 2002, 2003; Dey et al., 2002) and 0.865 μm (Chauhan et al., 2009) over oceans 
are retrieved using OCM data, assuming the ocean surface perfectly dark in near infrared (NIR) 
wavelengths. The inter-comparison of OCM AOD retrievals with AOD from SeaWiFS and MODIS show 
good agreement, with linear correlation coefficients of 0.88 and 0.75, respectively (Mishra et al., 2008). 
The mean percentage difference indicates that OCM AOD is +12% higher compared to SeaWiFS and +8% 
higher compared to MODIS. The mean absolute percentage between OCM AOD and SeaWiFS is found to 
be less (16%) compared to OCM and MODIS (20%) (Mishra et al., 2008). However, the quality of the AOD 
product is enhanced with an improved algorithm using OceanSat-2 data, which was a continuity mission 
to the applications of OceanSat-1.  

OceanSat-2 is the second satellite in the ocean series, which was successfully launched in 
September 2009 with the same OCM sensor but with improved channels. AOD at 865 nm over the 
oceans is regularly retrieved from OCM on-board the OceanSat-1 (1999-2010) and OceanSat-2 (2010-
present) satellites. Due to the unavailability of short-wave infrared channels on OCM, the AOD retrieval 
over land is challenging using existing DT and enhanced DB aerosol retrieval algorithms (Levy et al., 
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2017; Hsu et al., 2013). Recently, an advanced algorithm to retrieve AOD and fine mode fraction at a 
spatial resolution of 750 m utilizing OCM measurements in three visible and one NIR bands over land 
has been developed (Mishra et al., 2021). The OCM AOD product over land is operationally available on 
the VEDAS air quality portal (https://vedas.sac.gov.in) since December 2020. The validation of OCM AOD 
retrievals over land with in-situ AOD acquired at different AERONET station located in India shows good 
agreement, with linear correlation coefficients around 0.8 (Mishra et al., 2021).  

In addition, the Indian Space Research Organization (ISRO) is envisaging launching another 
OceanSat class satellite in the near future to provide service continuity for the operational OCM data 
from OceanSat-2; this new satellite will improve the repeatability of OCM AOD measurements. 

 
A3.7 GCOM-C SGLI 
 
The Second-generation Global Imager (SGLI) is carried by the Global Change Observation 

Mission for Climate (GCOM-C), which was launched on 23 December 2018. SGLI has 19 bands ranging 
from the near-UV (380 nm) to thermal infrared (12 um) wavelengths with swath-width of 1150-km (for 
visible and near infrared bands, VNR) or 1400-km (for short-wave infrared, SWIR, and thermal infrared, 
TIR, bands). The key characteristics of SGLI are 250 m spatial resolution and polarimetry with a ±45° 
along-track tilting function.  

The SGLI polarimetry consists of two telescopes measuring 673 nm and 868 nm wavelengths 
with +60, 0, and -60 degrees of linear polarization, used for calculating the Stokes vector (I, Q, and U 
components), which can improve estimates of fine mode aerosols. The SGLI aerosol product includes 
aerosol optical thickness at 500 nm, AE at 500 nm and 380 nm, SSA at 380 nm, QA flag, and the 
uncertainties of the retrieval parameters. These uncertainties are calculated as the variation range of 
the corresponding parameter when the parameter is perturbed between each of the uncertainties 
(https://suzaku.eorc.jaxa.jp/GCOM_C/data/ATBD/ver3/V3ATBD_A3AB_ARNP_MYoshida_20220106.pdf)
. 

A3.8 GOSAT-2 CAI-2 
 
Greenhouse gases Observing Satellite-2 (GOSAT-2) was launched on October 29th, 2018. The 

main mission of GOSAT series is to measure the global distribution of atmospheric greenhouse gases 
(GHG) that is a cause of global warming. GOSAT-2 makes to observe the whole globe by 89 orbits in 6-day 
revisit. GOSAT-2 has two sensors; one is Fourier Transform Spectrometer 2 (FTS-2) for GHG observation 
and the other is Cloud and Aerosol Imager 2 (CAI-2) for cloud and aerosol observation. CAI-2 is a push-
broom imaging sensor that has forward- and backward-looking, consisting of seven wavelengths and ten 
bands from near-ultraviolet, visible to near-infrared (339, 377, 441, 546, 672, 865 and 1630 nm). The 
spatial resolution (IFOV) is 460 m at wavelengths of 339 to 865 nm and 920 m at 1630 nm.  

One of CAI-2 missions is to derive PM2.5 and Black Carbon (BC) information. CAI-2 Level 2 (L2) 
aerosol products are aerosol optical thickness at wavelengths of 550nm and 1600nm (AOD550 and 
AOD1600), aerosol Ångström exponent (AE), BC volume fraction (BCF), equivalent value of PM2.5 
(ePM2.5). The target accuracy is 0.1, 0.1, 0.3, 0.1 and 20 µg/m3 for AOD550, AOD1600, AE, BCF and 
ePM2.5, respectively. The aerosol products will be provided via GOSAT-2 Product Achieve 
(https://prdct.gosat-2.nies.go.jp/aboutdata/howtoaccessdata.html.en). 
 

A4. Polar-Orbiting Spectrometers 
 

A4.1.  Sentinel-5P TROPOMI  
 

https://vedas.sac.gov.in/
https://suzaku.eorc.jaxa.jp/GCOM_C/data/ATBD/ver3/V3ATBD_A3AB_ARNP_MYoshida_20220106.pdf
https://prdct.gosat-2.nies.go.jp/aboutdata/howtoaccessdata.html.en
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TROPOMI has been flying on the Copernicus Sentinel-5 Precursor (S5P) satellite since 13 October 
2017. TROPOMI is a high spectral resolution spectrometer covering eight spectral windows from the UV 
to SWIR, and operating in a push-broom configuration, with a 2600 km swath width at a nadir resolution 
of 5.5 km x 3.5 km. The objective of the mission is operational monitoring of trace gas (O3, NO2, SO2, CO, 
CH4, and CH2O) concentrations for atmospheric chemistry and climate applications. ESA aerosol 
products include UV AI and O2-A band ALH. Currently, no ESA-produced AOD products are available from 
TROPOMI observations. 

The NASA OMI aerosol retrieval algorithms for cloud free conditions (OMAERUV; Torres et al., 
2007; 2013; 2018), and for above-cloud aerosols (OMACA; Torres et al., 2012; Jethva et al., 2018) have 
been combined into a single NASA research aerosol algorithm (TropOMAER) and applied to TROPOMI 
observations (Torres et al., 2020). TropOMAER standard aerosol products are UV AI, total column AOD, 
and SSA. As discussed in a recent evaluation of retrieval results (Torres et al., 2020), TROPOMI’s 
dramatic improvement in spatial resolution are attributable to TropOMAER improvements in relation to 
the heritage OMAERUV algorithm and to the availability of a VIIRS-based cloud mask that facilitates the 
identification of minimally cloud-contaminated TROPOMI pixels suitable for aerosol AOD/SSA retrieval. 

The UV AI parameter is TROPOMI’s aerosol product most relevant to PM estimation. The 
magnitude of the aerosol UV AI signal depends on AOD, ALH, and the aerosol absorption exponent (AAE) 
of UV-absorbing aerosols such as carbonaceous and desert dust. The ALH dependence can be 
particularly useful in the identification of aerosol layers above the PBL. As shown in Figure 1 of Torres et 
al. (2020), absorbing aerosols at 3 km or lower typically yield UV AI values < 4 and AOD < ~2. Thus, the 
UV AI magnitude can be used as a first initial step to separate aerosols above the PBL (generally long 
range transported smoke and desert dust aerosols) from aerosols in the PBL. 

 
A4.2.  Sentinel-5 UVNS  
 
The Copernicus mission Sentinel-5 (S5) will provide observations of atmospheric composition 

with daily global coverage for air quality and climate applications (Ingmann, 2012; ESA, 2019). The key 
products of the mission are NO2, O3, SO2, HCHO, CHOCHO, CO, CH4 and aerosols. The S5 instrument is an 
imaging spectrometer with spectral bands in the UV, visible, near infrared, and shortwave infrared 
(UVNS). The spatial resolution will be close to 7.2 km × 7.2 km at nadir. A series of three S5 UVNS 
instruments will be launched on the LEO MetOp-SG A satellites. The mission is developed by ESA and will 
be operated by EUMETSAT. The first MetOp-SG A satellite with S5 UVNS onboard is expected to be 
launched in 2024. S5 UVNS will provide several data products with information relevant to particle 
pollution, similar to S4 UVN and S5P TROPOMI, including Level 2 ALH, exploiting the O2-A band, and UV 
AI; these products are common to S4, S5 and S5P and will be generated using very similar algorithms. 
The S5 AOD product will be generated using an algorithm based on the OMAEROUV scheme (Torres et 
al., 2018) that is extended to the visible.  

 
A4.3. GaoFen-5 EMI 
 
The Environmental Trace Gas Monitoring Instrument (EMI) flies onboard the Gaofen-5 (GF-5) 

satellite as part of the Chinese civilian remote sensing satellite program Gaofen. Two G-5 satellites with 
EMI onboard were launched in May 2018 and in September 2021. Each EMI has a design lifespan of 8 
years. Being primarily designed to measure trace gases such as NO2, SO2, and O3, EMI has similar aerosol 
observing capabilities as other imaging spectrometers. The strongest benefit is expected in the 
synergistic use of aerosol information from EMI and the Directional Polarization Camera (DPC, see 
Appendix A5.1). 
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A5. Polarimeters 
 
A5.1. GaoFen-5 DPC  
 
The Directional Polarization Camera (DPC) has 8 channels between 443 nm and 910 nm with two 

visible bands and one near-infrared band for polarization. The instrument sees the same scene from 
nine different viewing angles. From these measurements, spectral AOD, AE, non-sphericity of particles, 
and fine mode AOD are derived. Xie et al. (2019) analyzed and applied the DPC retrievals to a smog 
event during 23-30 November 2018 and published the first global fine model aerosol optical depth map 
(Figure A3) and also reported that surface PM2.5 values estimated from fine mode AOD are more 
accurate than those derived from total AOD.  
 
 

 
Figure A 3. DPC fine mode aerosol optical depth at 865 nm at 3.3 km x 3.3 km resolution for 23-30 November 
2018. 

 
 
The validation of polarimeter data needs to be carried out prior to recommending the use of the 

products in daily applications. This work is being done in earnest for the 3MI instrument, to be launched 
soon by EUMETSAT (see Appendix A5.2). Most polarimeters fly in formation with imagers and 
spectrometers, either on the same satellite or on a satellite flying ahead or behind in the same orbit. The 
GaoFen-5 DPC instrument flies on the same platforms (GF-5) as the EMI, whose spectral coverage is in 
the ultraviolet to visible wavelengths and provides additional aerosol information that can be used in 
conjunction with DPC aerosol properties.  

  
A5.2. Metop-SG 3MI  
 
The second-generation meteorological satellites to be launched by EUMETSAT in 2023 into a 

mid-morning orbit with an equator crossing time of 9:30 AM will include a multi-angle, multi-viewing (14 
views), multispectral imager with three polarizations (3MI) to observe and characterize aerosol 
properties. The instrument will have 12 wavelengths in the spectral window 410-2130 nm with a spatial 
resolution of 4 km x 4 km. The instrument will be able to identify aerosol layer height, aerosol type, 
aerosol over clouds, fine mode fraction, aerosol optical depth, and aerosol absorption optical depth. In 
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contrast, a visible-near infrared imager like MODIS or VIIRS is only able to provide optical depth and 
some qualitative information on aerosol type. 3MI’s measured signal will come from measuring 
polarized light at different angles and wavelengths; spectral dependencies of various optical properties 
such as phase function and refractive index will be used to disentangle the signal and obtain information 
such as aerosol size distribution, composition, and layer height.  

EUMETSAT is planning to apply the GRASP algorithm, which is a versatile code that can be 
applied to a variety of satellite and in-situ sensors’ spectral radiance measurements (Dubovik et al., 
2011). The GRASP algorithm has been applied to polarization sensors such as POLDER and has been 
shown to provide accurate retrievals of single scattering albedo, size distribution, refractive index, in 
addition to total and absorption optical depths. Validation of various aerosol properties derived from 
POLDER-3 using AERONET data over China showed that the fine mode AOD retrievals were more 
accurate than total AOD (Tan et al., 2019). EUMETSAT is currently testing the GRASP algorithm on 
simulated 3MI data and NOAA is working with EUMETSAT in the evaluation process of proxy simulated 
retrievals.  

 
A5.3. Copernicus Carbon Dioxide Monitoring (CO2M) 
 
Expected to be launched in 2025, CO2M is a Copernicus mission consisting of three instrument 

suites: a combined CO2/NO2 instrument, a multi-angle polarimeter (MAP), and a cloud imager. AOD, 
ALH, and other aerosol optical and physical properties will come from the polarimeter whose 
measurements will help in the atmospheric correction for CO2 retrievals. Though the main purpose of 
the mission is to map urban area and power plant sources of CO2 at 4 km2 spatial resolution with a 
precision of 0.7 ppm or less, aerosols will be simultaneously retrieved using radiance and degree of 
linear polarization measurements at four different viewing angles and seven wavelengths (410, 443, 
490, 555, 670, 753, 865 nm) from a polarimeter. The multiple cameras and multiple angles along track 
with 12 cross-track oriented detectors will allow for 1 km2 aerosol retrievals. Full global coverage is 
expected every 10 days (https://space.oscar.wmo.int/instruments/view/map).  

 
A5.4. CALIOP 
 
The need to fully map aerosols across the globe, including vertical profiles, propelled space 

agencies to consider flying an active lidar. NASA launched the first aerosol specific lidar, CALIOP, on 
CALIPSO in 2006. CALIOP, with its two 532 nm channels (parallel and perpendicular polarization) and 
1064 nm channel, is capable of retrieving aerosol extinction profiles and aerosol type using 
depolarization ratio and color ratio information. The vertical resolution of the products is about 30 m 
and retrievals from the surface to 40 km are possible.  

NASA also launched the Cloud and Aerosol Transport System (CATS) instrument on the 
International Space Station with three wavelengths (355 nm, 532 nm, and 1064 nm), where polarized 
return signals from the atmosphere were measured. The CATS team adapted the CALIOP algorithms to 
process the data and kept the products consistent, but the instrument malfunctioned within two years 
of launch; it operated successfully from January 2015 to October 2017.  

The ATmospheric LIDar (ATLID) on the Earthcare satellite is an ESA mission that has a single 355 
nm laser whose return signals are filtered for molecular scattering and aerosol scattering to retrieve 
100-m resolution vertical profiles of aerosol optical depth from near the surface to 40 km.  

The planned NASA Aerosols Clouds Climate and Precipitation mission in response to the second 
decadal survey recommendations is also expected to carry a lidar in addition to a polarimeter and 
spectrometer.  
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A5.5. Atmosphere Observing System (AOS) 
 
The AOS is a multi-satellite mission with targeted observations of clouds, precipitation, and 

aerosols to learn about various feedback mechanisms tied to climate. Named AOS-P1, AOS-I1, AOD-I2, 
the platforms will carry a suite of different instruments. A combination of these measurements will 
provide relevant information on observables such as aerosols, clouds, and precipitation. Aerosol 
information can be obtained from a high spectral resolution lidar (532 nm, 1064 nm), multi-angle 
polarimeter, and a UV-VIS spectrometer on AOS-P1. The expected spatial resolution for aerosol products 
is 0.5 km2. AOS-I2 will also have a backscatter Lidar and a multi-angle polarimeter. All satellites will be 
launched into inclined orbits and therefore be able to provide some diurnal information.  
 

A6. Ground-Based Sensors 
 
Monitoring surface PM2.5 using an integrated approach of satellites and models requires a host 

of in-situ observations, ranging from AOD and PM2.5 to aerosol vertical distribution, aerosol composition, 
and optical properties. While not all observations are made routinely, a significant number of networks 
exist that observe diverse information.  

  
A6.1. Surface PM2.5 
 
PM2.5 is one of the criteria pollutants identified by environmental agencies worldwide. The 

standard measurements are often made in temperature- and humidity-controlled (~40%) environments, 
and therefore are referred to as dry mass concentration. 

The systematic regulatory measurement of PM2.5 in the US started in late 1997 with a few 
monitors and has grown over the past two decades to more than 1000 continuous monitoring stations. 
Most other countries started monitoring PM2.5 in the 21st century. US EPA makes PM2.5 data available 
(https://www.epa.gov/outdoor-air-quality-data) in various formats, including Application Programming 
Interface (API) access. Several other countries around the world also make data available in the public 
domain.  

In 2015, a private company (now a non-profit organization) called openAQ (openaq.org) started 
archiving PM2.5 and other pollutant data from US embassy locations around the world into an easy-to-
access data format. Gradually, openAQ extended its database to include other standard air quality 
networks specifically operated by individual countries. The openAQ database started with few stations 
and has grown over the last five years to include PM2.5 data from more than 4000 stations worldwide, 
including 86 countries. OpenAQ only archives data in forward processing, meaning that even though 
many of the stations may have longer data records, openAQ only contains data from the date the 
station was added to their data record. OpenAQ data can be downloaded from their website, including 
API access. OpenAQ metadata includes station information and original source of data but does not 
have any details on data collection instruments. A recent study (Christopher and Gupta, 2020) used 
these global data sets and collocated with MODIS AOD records to understand the data availability in 
different parts of the world and its impact on AOD-PM2.5 relationships. Over the years, more than 100 
other studies have utilized data records from openAQ to perform various air quality analyses, including 
those with satellite observations. 

There are also growing networks of low-cost sensors from the private sector and citizen 
scientists that are relevant for PM2.5 monitoring. The most popular low-cost network is PurpleAir (PA), 
with >10,000 sensors operating around the world. PurpleAir sensors use two identical sensors in a single 
unit for cross-calibration and consistency checks. In addition to PM2.5, PM10, and PM1, the unit also 
records ambient temperature and relative humidity. The PA sensor records PM2.5 every 2 minutes; 

https://www.epa.gov/outdoor-air-quality-data
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sensors connected to the internet send their measurements to the PA cloud where it becomes publicly 
available in real-time in the form of a map and chart. The most significant advantage of PA data is its 
open access through API and download tools. Over the years, several research groups have deployed PA 
sensors in large numbers and attempted to calibrate their measurements with US EPA regulatory 
Federal Reference Method / Federal Equivalent Method (FRM/FEM) monitors (Gupta et al., 2018; 
Feenstra et al., 2019). The sensors' accuracy varies as a function of aerosol type, aerosol concentration, 
temperature, relative humidity, and other environmental conditions. There can also be significant 
differences among identical PA units. More recently, the US EPA has published correction factors for PA 
data so the data can be merged with data from regulatory monitors to fill spatial gaps (Barkjohn, et al., 
2021; Holder et al., 2020). 
 
 

 
A6.2. AERONET 
 
AERONET utilizes Cimel Electronique Sun/Sky/Moon radiometers at more than 600 sites 

worldwide to measure total column AOD and retrieve aerosol characteristics such as volume size 
distribution, complex index of refraction, and SSA. Measurements of AOD are performed using eight 
nominal spectral bands (340 nm, 380 nm, 440 nm, 500 nm, 675 nm, 870 nm, 1020 nm, 1640 nm) at 5-to-
15-minute intervals (Holben et al., 1998; Giles et al., 2019). The AOD measurements are cloud screened 
and quality controlled according to the AERONET Version 3 algorithm (Smirnov et al., 2000; Giles et al., 
2019). Uncertainty in the calibrated and temperature corrected AOD vary from ±0.01 for the visible and 
near infrared wavelengths and ±0.02 for the ultraviolet wavelengths (Eck et al., 1999; Giles et al., 2019). 
New nighttime AOD measurements are performed using the moon from the waxing gibbous to waning 
gibbous lunar phase (Li et al., 2016; Barreto et al., 2016). The uncertainty in these nighttime AOD 
measurements is estimated to be larger (~0.03) due to instrument and irradiance model uncertainties, 
and these data may be further affected by optically thin cirrus clouds.  

Inverting AOD with the magnitude and angular distribution of sky radiances allows for the 
retrieval of aerosol characteristics utilizing the 440 nm, 675 nm, 870 nm, and 1020 nm nominal 
wavelengths (Dubovik and King, 2000; Dubovik et al., 2000, 2002, 2006; Sinyuk et al., 2020). In general, 
retrieved quality assured SSA has an uncertainty of ±0.03 according to Dubovik et al. (2002). Sinyuk et al. 
(2020) determined that the uncertainty of SSA and imaginary part of the refractive index retrievals can 
vary depending on AOD magnitude with smaller uncertainties corresponding to larger AOD. Further, 
Schafer et al. (2014, 2019) showed excellent agreement between AERONET inversion products and 
column integrated in-situ aircraft profiles of SSA and size distribution during the DISCOVER-AQ 
campaigns. The next iteration of the AERONET inversions will likely implement changes to algorithm 
constraints and include a up to three additional wavelengths (380 nm, 500 nm, and 1640 nm) to provide 
improved spectral range of aerosol absorption products and aerosol particle assessments (Sinyuk et al., 
in preparation). 

AERONET’s growth during nearly 30 years of operation is based on international participation 
and collaboration within the context of a federated network. The quality of the public domain database 
is maintained by imposing standardization of instruments, calibration, processing, quality assurance, and 
data distribution (Holben et al., 1998). Access to the historic and near real-time aerosol products is 
available from https://aeronet.gsfc.nasa.gov. The network has largely stabilized in the number of active 
sites over the past four years owing to replacement and upgrades that has increased the capabilities of 
existing sites as described above. Expansion of the network is planned and ongoing in regions of low 
spatial coverage and as scientific opportunities and collaborations arise. The network deployments 
began with an emphasis on sites with elevated aerosol loading and regionally representativeness to 

https://aeronet.gsfc.nasa.gov/
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support satellite validation research. For over 20 years, background sites, urban and agricultural, oceanic 
and coastal sites have been included at all latitudes and continents. The current highest deployment 
priorities are the continent of Africa and extending collaborations in central Asia, China and Russia. Co-
location with the MPLNET and other ground based super sites is strongly encouraged. 

NASA’s AERONET contribution to PM is largely indirect, where AOD is used to normalize lidar 
signals (e.g., MPLNET) or to develop a coefficient to relate ground based PM2.5 to satellite retrievals 
(SPARTAN). Further, AERONET Distributed Regional Aerosol Gridded Observation Networks (DRAGON) 
campaigns have and continue to contribute to higher instrument spatial density to support large aircraft 
field campaigns such as TRACER-AQ, which is assessing air quality using the airborne GCAS 
(GEOstationary Coastal and Air Pollution Events (GEO-CAPE) Airborne Simulator) sensor as a testbed for 
TEMPO (Holben et al., 2018; Judd et al., 2021). Data acquisition systems currently in development for 
AERONET may allow for expansion of instruments at select sites to include low-cost air quality sensors 
(e.g., PurpleAir). Future satellite missions such as MAIA will leverage AERONET instrumentation to 
provide multi-year monitoring at key primary and secondary target regions (Diner et al., 2018). 
AERONET measurements performed concurrently with ground-based in-situ PM measurements and 
lidar are expected to provide a foundation for developing future PM retrievals from space.  

 
 

 
Figure A 4. Aerosol Robotic Network (AERONET) global site distribution in 2021. 

 
 
A6.3. Ceilometer and Lidar Networks 
 
Following critical maturation in lidar technology that has been on a steady rise since the 1990s, 

ceilometers and lidars have become less distinct. The micro-pulse lidar was the first robust, 
commercially available lidar at visible wavelengths capable of running continuously and providing both 
ceilometer-like data (multiple cloud and PBL heights) and retrievals of aerosol properties (when co-
located with a sun photometer). Advanced lidar systems have been developed that provide direct 
retrieval of aerosol extinction, multi-wavelength profiling providing micro-physical retrievals, and 
doppler lidar for both wind and aerosol profiling. Ozone lidars have been upgraded to profile boundary 
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layer ozone, and DIAL systems are on track towards a commercially available system for water vapor 
profiling (and aerosol extinction with the HSRL channel). Ceilometers have also improved, as primarily 
newer instruments with increased SNR have enabled higher profiling and a better ability to detect 
aerosols and even retrieve backscatter in some cases.  

 New networks have taken advantage of these developments to provide operational 
atmospheric profiling. Lidars have moved from the research realm to operational networks, starting 
around 2000 with EARLINET, ADNET, and MPLNET. The European Aerosol Research Lidar Network 
(EARLINET) was started as a research focused network of advanced lidars across Europe. The Asian Dust 
Lidar Network (ADNET) was also developed as a regional network providing lidar profiles of dust and 
pollution across Eastern Asia. In the US, the NASA MPLNET was created to provide global lidar profiling 
at key AERONET sites. In addition to these networks, the Network for the Detection of Atmospheric 
Composition Change (NDACC) pre-dates these networks and many sites have lidar data to contribute. 
More recently, new lidar and ceilometer networks have come online such as LALINET, a federated lidar 
network throughout Latin America. A successful example of exploiting new ceilometer capabilities is 
EUMETNET’s E-PROFILE project, which provides data from European ceilometer networks. A new project 
called the Unified Ceilometer Network (UCN), funded by US EPA and NASA, will provide ceilometer data 
in North America with specific goal of supporting air quality programs. These lidar and ceilometer 
networks have continued to mature and develop more operational capabilities and data sets, coupled 
with viable data centers providing DAAC services and access to near-real-time data. 

Coordination of ceilometer and lidar networks has been improving over time, but there are still 
challenges from a global perspective. In 2008 under WMO guidance, the Global Atmospheric Watch 
(GAW) Aerosol Lidar Observation Network (GALION) was created with existing lidar networks as 
members (EARLINET, ADNET, MPLNET, LALINET, and NDACC lidar) (Figure A5). The goal was to share 
information, best practices, develop frameworks and techniques for quality data, and improve ability to 
access network data.  

 
 

 
Figure A 5. Global Atmospheric Watch (GAW) Aerosol Lidar Observation Network (GALION) stations. 
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A6.4. Surface Particulate Matter Network (SPARTAN) 
 

A key source of uncertainty in the inference of PM2.5 from satellite retrievals of AOD is the 
spatiotemporal distribution of the relationship of PM2.5 with satellite retrievals of columnar AOD. The 
Surface PARTiculate mAtter Network (SPARTAN) of ground-based monitoring stations is designed to 
measure this relationship to evaluate and enhance satellite remote sensing of PM2.5. SPARTAN is an 
ongoing, long-term project that measures aerosol mass, ions, trace elements, and aerosol optical 
properties at globally dispersed, densely-populated areas. Monitors are collocated with ground-based 
sun photometers that measure AOD, to yield an empirical measure of the relation of AOD with PM2.5 
mass, scatter, and composition. 

Snider et al. (2015) provide an overview of the SPARTAN PM observation network, the cost-
effective sampling methods employed, and initial post-sampling instrumental methods of analysis. 
Subsequent publications describe the initial analyses of major PM2.5 components (Snider et al. 2016), 
uncertainty characterization (Weagle et al. 2018), and elemental analyses (McNeill et al. 2020). The 
standard setup utilizes a combination of continuous monitoring by nephelometry and mass 
concentration via filter-based sampling. The instruments, a three-wavelength nephelometer and 
impaction filter sampler for both PM2.5 and PM10, are highly autonomous. Nephelometer backscatter 
and total light scatter at three wavelengths provide high temporal resolution and some information on 
particle size. Nephelometer light scattering is constrained with filter-based measurements; the 
combination of these measurements yields estimates of hourly PM2.5 concentrations. SPARTAN filters 
are analyzed for mass, ions, carbonaceous material, and trace elements.  

SPARTAN site-selection favors densely populated, globally dispersed regions that are 
underrepresented in terms of availability of representative and long-term air quality data. Local site-
selection favors representative environments that avoid anomalous sources; low rooftops in urban 
environments are desirable to increase fetch, diminish local traffic influence, and offer instrument 
security. Locations of SPARTAN sites are shown in Figure A6. Since SPARTAN site selection prioritizes 
under-sampled locations, some regions that are well-represented in terms of air quality data have not 
established a SPARTAN site to date. Further expansion of the network is desired for the future, in order 
to cover regions not sampled by SPARTAN, as well as add more sites in under-represented regions. 

SPARTAN has undergone several upgrades since the original publications. Beginning in 2017, 
sampling stations were upgraded to the AirPhoton SS5 model, which uses a cyclone inlet to achieve a 
sharper size cut than the prior nucleopore filters. Beginning in 2018, filters have been routinely shipped 
to UC Davis for additional carbonaceous analysis (FTIR, HIPS). Beginning in 2019, manual gravimetric 
analyses were replaced with an automated weighing system (MTL AH500E) to improve precision and 
throughput, ICP-MS analysis transitioned to XRF (Malvern Panalytical Epsilon 5) to improve 
characterization of crustal elements, and the IC instruments were upgraded (ThermoFisher Integrion). 
Partnership with IMPROVE promotes consistency across both networks. Activities are ongoing to directly 
measure organics through aerosol mass spectrometry. In early 2022, seven additional sampling stations 
were deployed at selected MAIA primary target areas. These stations include communication modules 
to facilitate remote commanding of the instruments to sample at MAIA overpass times.  
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Figure A 6. Site locations of the Surface Particulate Matter Network (SPARTAN) that measures the relationship of 
columnar AOD with PM2.5 mass and chemical composition.  

 
 

A6.5. A-SKY and SKYNET  
 
The International Air quality and SKY research remote sensing network (A-SKY) has been newly 

developed to promote research on atmospheric environmental changes. The idea for this network 
comes from past simultaneous ground-based observations by the multi-axis differential optical 
absorption spectroscopy (MAX-DOAS) and skyradiometer (as part of SKYNET). Such unique simultaneous 
observations are currently in operation at 7 sites, namely, Chiba (Japan), Fukue (Japan), Kasuga (Japan), 
Sendai (Japan), Phimai (Thailand), Haldwani (India), and Seoul (Korea) (http://atmos3.cr.chiba-u.jp/a-
sky/). As an example of significant research by Irie et al. (2019), the intensive simultaneous observations 
by MAX-DOAS and skyradiometer performed at the A-SKY Phimai site during the 2016 dry season 
indicated that in biomass burning plumes, evident increases in aerosol absorption optical depths 
(AAODs) retrieved from skyradiometer observations occurred together with the enhancement of the 
near-surface concentration of formaldehyde retrieved from MAX-DOAS. Another example is from 
Damiani et al. (2021) that for the A-SKY Chiba site the partial column (column below an altitude of 1 km) 
aerosol optical depth and AAOD derived from the simultaneous MAX-DOAS and skyradiometer 
observations at ultraviolet wavelengths were found to reproduce well the surface PM2.5 and black 
carbon mass concentrations, respectively. Moreover, significant contribution to international framework 
of satellite validation activities (e.g., OMI, GOME-2A, TROPOMI, GEMS, GCOM-C/SGLI, GOSAT-2) is on-
going using A-SKY and SKYNET observations. Thus, these networks are expected to play a critical role in 
various researches of atmospheric science. 
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Figure A 7. Site locations of A-SKY (left) and SKYNET (right). 

 


